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Abstract

Sequential and temporal data is omnipresent in various areas of our lives. It
is characterized by a sequence of data points in a fixed order, possibly with
a temporal component. With an increasing amount of data being generated
and collected, and different types of data originating from various domains,
appropriate methods are needed to examine, interpret, understand, and draw
conclusions from complex processes. Depending on the use case, the amount
of data, and the target group, different analysis methods have to be chosen or
developed. While visualization alone can already provide interesting insights
into the data, interactive visual analysis helps users extract additional informa-
tion by letting them focus on specific parts of the data and exploring it from
different perspectives. Techniques such as brushing and linking and multiple
coordinated views (multiple visualizations for the same data that are linked)
help realize such an examination.

In this thesis, several approaches for visually analyzing sequential data are
presented. The focus lies particularly on two key application areas: eye tracking
and the interpretability of machine learning (ML) methods. Additionally, the
use of dimensionality reduction methods during preprocessing for visualization
is an important concept of this work. In all these areas, sequential or temporal
components play important roles. They can be the subject of exploration, used
as input data to trigger complex processes, represent internal mechanisms
within methods, or be the output of a process. Users may want to examine or
compare them to understand the data better. In the area of eye tracking analysis,
this thesis presents a visual analysis approach that addresses the influence of
various filter settings (parameter choices) on the data being visualized and
interpreted. Additionally, a method is presented that combines temporal data
from different sources to enable a better comparison of this data. Preprocessing
steps play a crucial role in both methods to allow meaningful visualizations
of the data and subsequent examination of the data. Next, various ML ap-
proaches are considered. The interpretability of ML techniques is currently
a very important and challenging topic. Especially ML models in the area of
natural language processing (NLP) deal with sequential components as input
data, and also, the internal operations follow sequential processing steps. This
thesis demonstrates that, in the field of NLP, internal information from neural
machine translation (NMT), visual question answering (VQA), and text classifi-
cation tasks can be made available to users for an enhanced understanding of
internal mechanisms and to improve prediction results. Toward the end of this
thesis, dimensionality reduction techniques are applied as a preparation step
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Abstract

for visualizing sequential data. First, dimensionality reduction is used in an
interactive system to examine text classification in the context of ML. However,
interpreting 2D visualizations of dimensionally reduced sequential data requires
careful consideration due to the possibility of data loss, misleading projections,
and potential misinterpretation of the visualization itself. Therefore, in this
work, visualization approaches are presented that address this challenge to
provide methods to prevent misinterpretation. Overall, all presented interactive
visualization approaches of this thesis use sequential data as input, and the
visual analysis techniques help users during data exploration, interpretation,
for debugging purposes, or to improve prediction results generated with ML
models.
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Zusammenfassung

Sequenzielle und zeitliche Daten sind in verschiedenen Bereichen unseres Le-
bens allgegenwärtig. Sie sind durch eine Aneinanderreihung von Datenpunkten
mit festgelegter Reihenfolge gekennzeichnet, gegebenenfalls mit einer zeitlichen
Komponente. Mit einer zunehmenden Menge an erzeugten und gesammelten
Daten sowie den unterschiedlichen Datenarten aus verschiedenen Bereichen
werden geeignete Methoden benötigt, um komplexe Vorgänge zu untersuchen,
zu interpretieren, zu verstehen und Schlussfolgerungen daraus zu ziehen. Je
nach Anwendungsfall, Datenmenge und Zielgruppe müssen unterschiedliche
Analysemethoden gewählt oder entwickelt werden. Während eine Visuali-
sierung bereits interessante Einblicke in die Daten gewähren kann, hilft die
interaktive visuelle Analyse den Nutzern, zusätzliche Informationen zu extra-
hieren, indem sie sich auf bestimmte Bereiche der Daten konzentrieren und
diese aus verschiedenen Blickwinkeln untersuchen können. Techniken wie das
Auswählen und Verknüpfen (Brushing and Linking) und mehrere koordinier-
te Ansichten (mehrere Visualisierungen für dieselben Daten, die miteinander
verknüpft sind) helfen bei der Umsetzung einer solchen Untersuchung.

In dieser Arbeit werden verschiedene Ansätze zur visuellen Analyse sequenzi-
eller Daten vorgestellt. Der Fokus liegt insbesondere auf zwei zentralen Anwen-
dungsbereichen: Blickpunktverfolgung (Eye-Tracking) und Interpretierbarkeit
maschineller Lernmethoden. Darüber hinaus ist die Verwendung von Methoden
zur Dimensionsreduzierung während der Vorverarbeitung zur Visualisierung
ein wichtiges Konzept dieser Arbeit. In all diesen Bereichen spielen sequenzielle
oder zeitliche Komponenten eine wichtige Rolle. Sie können Gegenstand der
Untersuchung sein, als Eingabedaten für die Auslösung komplexer Prozesse die-
nen, interne Mechanismen innerhalb von Methoden darstellen oder die Ausgabe
eines Prozesses sein. Benutzer möchten sie möglicherweise untersuchen oder
vergleichen, um die Daten besser zu verstehen. Im Bereich der Eye-Tracking-
Analyse wird in dieser Arbeit ein visueller Analyseansatz vorgestellt, der sich
mit den Auswirkungen verschiedener Filtereinstellungen (Parameterauswahl)
auf die visualisierten und zu interpretierenden Daten befasst. Zusätzlich wird
eine Methode vorgestellt, die zeitliche Daten aus verschiedenen Quellen kom-
biniert, um einen besseren Vergleich dieser Daten zu ermöglichen. Bei beiden
Methoden spielen Vorverarbeitungsschritte eine entscheidende Rolle, um eine
sinnvolle Visualisierung der Daten und eine anschließende Untersuchung zu
ermöglichen. Anschließend werden verschiedene maschinelle Lernansätze be-
trachtet. Hier ist die Interpretierbarkeit von Methoden des maschinellen Lernens
derzeit ein sehr wichtiges und herausforderndes Thema. Insbesondere Modelle
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Zusammenfassung

des maschinellen Lernens im Bereich der natürlichen Sprachverarbeitung (NLP)
beschäftigen sich mit sequenziellen Komponenten als Eingabedaten und auch
die internen Vorgänge folgen sequenziellen Verarbeitungsschritten. In dieser
Arbeit wird für den Bereich NLP gezeigt, dass interne Informationen aus neu-
ronaler maschineller Übersetzung (NMT), visuellen Frage-Antwort-Systemen
(VQA) und Textklassifizierungsaufgaben den Nutzern zum besseren Verständ-
nis interner Vorgänge und zur Verbesserung von Vorhersageergebnissen zur
Verfügung gestellt werden können. Gegen Ende dieser Arbeit werden Techni-
ken zur Dimensionsreduktion als Vorbereitungsschritt für die Visualisierung
sequenzieller Daten angewendet. Zunächst wird Dimensionsreduktion in einem
interaktiven System zur Untersuchung der Textklassifizierung im Kontext des
maschinellen Lernens eingesetzt. Die Interpretation von 2D-Visualisierungen
dimensionsreduzierter sequenzieller Daten erfordert jedoch eine kritische Be-
trachtung aufgrund der Möglichkeit eines Datenverlusts, missverständlichen
Projektionen und möglicher Fehlinterpretation der Visualisierung selbst. Da-
her werden in dieser Arbeit Visualisierungsansätze vorgestellt, die diese Her-
ausforderung angehen und eine Möglichkeit bieten, Fehlinterpretationen zu
vermeiden. Zusammengefasst nutzen alle vorgestellten interaktiven Visualisie-
rungsmethoden dieser Arbeit sequenzielle Daten als Eingabe, und die visuellen
Analysetechniken helfen Benutzern Daten zu analysieren, zu interpretieren,
Fehler zu suchen und zu beseitigen oder Vorhersageergebnisse zu verbessern,
die mit Methoden des maschinellen Lernens erzeugt wurden.
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Introduction

Many measurements, mechanisms, and processes have a sequential or temporal
component. Analyzing them in different application domains is essential to
understanding and interpreting them, as well as to improving the quality
of underlying or related procedures. The selection of an analysis method
is crucial for data interpretation and to gain insights into the data. Visual
analysis processes are especially valuable in analyzing such data. For this thesis,
different visual analysis approaches were developed and evaluated, focusing
on interactive visualization to facilitate human-machine collaboration. Two
research areas are primarily examined and used as application examples: eye
tracking and the interpretability of machine learning (ML) approaches with
sequential aspects.

With eye tracking [158], human gaze can be recorded at a given frequency over
time to analyze where they look. Visual analysis helps explore gaze positions
through different interactive visualizations. Here, the raw gaze positions or
extracted eye movements, consisting of an aggregation of multiple gaze posi-
tions, can be used as sequences or time series in the analysis. When looking at a
visual stimulus, humans show individual gaze behaviors with different patterns,
trends, and possibly anomalies in their eye movement. Various types of eye
movements can be extracted and analyzed from the recorded gaze positions.
In a visual analysis approach, raw data and extracted information can be used
to analyze gaze patterns and their influence on the attention and perception
of one or multiple people. Additionally, it is, for example, possible to evaluate
underlying mechanisms for the extraction of eye movements.
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The second application domain used in this thesis is ML. The interpretability
of ML, especially deep learning (DL), is currently an important and growing
research area, also known as explainable artificial intelligence (XAI). Results
generated with ML approaches are often astonishing but sometimes still wrong
or unexpected. The models are usually hard to understand and gain insights
into. They are frequently considered black boxes, where internal mechanisms
and results created during prediction are difficult to grasp. One goal in this
context is to open the black box, making ML models more transparent and
controllable via visual analysis. This thesis explores and evaluates visual
analysis methods for ML in the context of several concrete examples from
natural language processing (NLP). In ML, different sequential or temporal
components can be found varying from the input data and the training process
to the internal states during prediction and possibly the output. When data
from NLP is used, the analysis of text components plays an important role. Text
consists of individual words that are ordered and processed in a sequential
way. Internal mechanisms such as the training or prediction process are often
performed in a temporal manner. Especially the visual analysis of internal states
of such ML models helps make ML models more interpretable and steerable.
Then, it is possible to better understand prediction results and their relation to
internal states. Additionally, it may help in debugging and data curation, hence
improving models or prediction results.

Various aspects of sequential data can be explored through visual analysis,
especially through interactive data exploration with visualizations. Here, the
potential of computer-generated visualizations and the ability of users to interac-
tively explore, understand, interpret, and modify them can be leveraged.

Before a user can actually explore data through visualization, the input data
must be preprocessed to allow the generation of visualizations and subsequent
analysis. Such data preparation and transformation includes, for example,
filtering, joining, aggregating, and the extraction of important features. This
step plays an essential role in all projects presented in this thesis. It is, for
example, also a part of the visualization pipeline as proposed by Card et al. [76].
In particular, the use of dimensionality reduction techniques to reduce the
number of features in the data for visualization will be examined in detail.

This thesis presents different approaches with the common goal of providing
mechanisms for visual analysis of (multidimensional) sequential data to inter-
actively analyze the data or related processes. In all projects, preprocessing
is of substantial importance. In the analysis of gaze data, the influence of
filter settings for detecting eye movements and the possibilities of joining data
from different devices is explored. In the context of XAI [50], neural machine
translation (NMT) [297, 305], visual question answering (VQA) [41], and the
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- Dimensionality reduction
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Interactive
visualizations
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Figure 1.1 — Generalized workflow
for the proposed visual analysis ap-
proaches in this thesis: from input
data (sequences or time series, e.g.,
in the form of gaze data or text), over
preprocessing (such as filtering, join-
ing, extraction of information, or di-
mensionality reduction) and interac-
tive visualizations (usually multiple
connected views with brushing and
linking) to the visual analysis. Note
that the importance of the individual
steps within the approaches presented
in this thesis varies. In addition, some
of the presented methods contain ad-
ditional elements such as loopbacks
for generating improved models and
newly created input data, or the mod-
els include additional (non-sequential)
input data (e.g., images).

classification of text sequences are investigated. Corresponding ML models
require the possibility to extract internal information generated during the pre-
diction for visualization. Finally, commonly used unsupervised ML methods are
employed as a preparation step for the 2D visualization of sequential data, and
improved visualization methods are presented to avoid misinterpretation.

Figure 1.1 provides an overview of the different aspects this thesis covers
with respect to the visual analysis of sequential data: from the sequential or
temporal input, the preprocessing, and interactive visualizations to the analysis.
Each step of this workflow plays a key role in the visual analysis processes
presented in this thesis. Often, approaches must be specifically designed for
the individual input data type, analysis goals, and target groups to be able to
handle all important aspects of the data. Preprocessing steps are crucial for
extracting essential information, aggregating or filtering the data, or general
preparation for the visualization on a 2D plane. Finally, the actual visualizations
with possibilities for interaction must be selected or designed such that the
relevant information can be presented meaningfully to users and that the target
group of the approaches can easily understand and work with the presented
visualizations.
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Terminology

In this thesis, the terms projection and to project are used to describe the process of
mapping high-dimensional data into a lower-dimensional space (e.g., 2D) using
dimensionality reduction techniques. While some of these techniques, such as
PCA [160], satisfy the mathematical definition of a projection, others do not (e.g.,
t-distributed stochastic neighbor embedding (t-SNE) [319]), since they do not
have properties such as linearity and idempotence. However, for consistency,
the term projection is used throughout this thesis for all dimensionality reduction
methods.

1.1 Research Questions

Different research questions were formulated and examined throughout this
thesis in the context of the research areas mentioned above.

• The first research question deals with the visual analysis of sequential and
temporal data. Visual analysis approaches can help users explore and better
understand data with different structures and from various application
domains. This thesis focuses on sequential data and the usefulness of
developed visual analysis approaches.

RQ1: How beneficial is interactive visual analysis in exploring sequential
data?

Many visualization and visual analysis approaches already exist for sequen-
tial and temporal data in different domains [311]. The focus of this thesis
lies particularly on eye tracking data and data generated with sequence-
based ML approaches. Each data type and corresponding analysis goal may
require a specifically designed visual analysis solution. Then, different eval-
uation methods can be employed to verify the usefulness of the approaches.
These methods can include user studies, computer-based evaluations, and
the demonstration of use cases.

• Many algorithms provide (hyper)parameters to allow users access to dif-
ferent variables used while processing some data. (Hyper)parameters are
variables (i.e., values or settings) used in an algorithm during execution. In
the context of ML, they are usually called hyperparameters. These parame-
ters have a strong impact on the behavior of an algorithm, its performance,
its output, and therefore also on the analysis results. Many research studies
do not even report on their parameters when they present their results in
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publications. In the context of this thesis, we analyze their influence on the
input data used for visualization and the analysis.

RQ2: How does the choice of (hyper)parameter values (in preprocessing and
the analysis) affect the visual analysis of sequential data?

When parameter values are chosen poorly, the visualizations and the conclu-
sions drawn from the visualized data can be misleading or even incorrect.
Therefore, it is often important to select these parameter values carefully
and to explore their influence by comparing results with differently chosen
values.

• The third research question deals with the interpretability of sequential or
temporal components in ML. ML, and especially DL [31], are currently
important research areas where understanding internal processes is crucial.
Especially, the internal states of a model are interesting during the explo-
ration and might be used to draw conclusions about the final prediction
result.

RQ3: How can visual analysis of internal (sequential) components of ML
methods improve their interpretability?

Many systems and approaches exist in the context of XAI with the goal of
increasing the interpretability of ML models through visualizations [351].
Nevertheless, there are still many open challenges when it comes to pro-
viding users with a system to understand their ML models and explain the
prediction results. The designs of these systems depend, for example, on the
input data, selected model, target group, and analysis goals. Since it is often
necessary to include information from the specific input data of a given task
into the system, the analysis solutions may not always be generalizable to
data with other specifications or from other domains. Additionally, there
exists a large amount of different ML architectures with different internal
mechanisms that may require individual visualizations. This thesis focuses
on the field of NLP that uses sequences (and possibly other additional data
formats) as input, different sequential (internal) mechanisms during the
prediction, and possibly sequences as output. While users can have access
to specific internal structures, it is still relevant if this information is helpful
to users during the analysis. Additionally, resources might need specific
preparation to make them accessible to users, e.g., through adaption of the
architecture of the ML model or through transformation for visualization.
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• Finally, the last research question deals with dimensionality reduction as
a means to explore sequential and temporal data. Using dimensionality
reduction techniques, high-dimensional data can be mapped to a lower
dimensional space (e.g., two dimensions), and the newly generated data can
be used for visualization. Such a mapping can be applied to a variety of
different data types. In the literature, using this technique for static data with
multiple dimensions to generate and analyze 2D visualizations is common.
Usually, the visualizations consist of dots, each representing a data instance.
Here, distances between dots and clusters of dots can be used to relate to the
structure of the original data. In previously published work, this technique
was also used for temporal data (see Table 5.1 on page 171). In addition to
dots, instances are connected to show the temporal order. However, none of
the existing literature explored if such an approach is actually appropriate
for the interpretability of patterns in temporal multidimensional data in 2D
and if projection problems and new visual elements may be problematic for
the interpretation. Therefore, the usefulness of such utilization should be
explored.

RQ4: How appropriate are dimensionality reduction techniques for visually
exploring sequential data?

In this thesis, temporal components of ML models are extracted and pro-
jected to 2D for the visual analysis of the underlying structure of internal
information. Additionally, issues related to such a visualization technique
are discussed, and visualization methods are proposed to avoid misinter-
pretation of the data. Artificial data, simulations, and observation results
exemplify these new methods.

The individual research questions do not stand for themselves but are inter-
connected. All projects presented in this thesis relate to at least two of these
research questions, most of them to even more. An overview of the individual
visual analysis approaches presented in this thesis and their relation to related
mechanisms and the research questions can be found in Figure 1.2.

1.2 Outline and Contribution

This section provides a summary of each chapter of this thesis and outlines
my contribution to published papers, partially reused in this thesis, and the
corresponding source code available for all projects. Additional material (such
as videos, input data, or trained models) is also available for some projects. My
supervisor, Daniel Weiskopf, was involved in all the methods presented in this
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Figure 1.2 — Overview of the different visual analysis approaches presented
in this thesis: On the right side, the different visual analysis systems and the
respective research questions they address are listed in the order in which they
are presented in this thesis. The left side of the diagram shows the thematic
context of the individual visual analysis approaches.

thesis, proposing ideas and continuously giving support and feedback. He is a
co-author of each publication.

After providing background information in Chapter 2, three chapters present
different types of visual analysis approaches for sequential data: Chapter 3
focuses on techniques that rely on temporal data, specifically on the analysis of
eye tracking data. Chapter 4 explores examples from NLP, where text sequences
are used as input, and visualizations in the context of XAI are presented. Finally,
in Chapter 5, dimensionality reduction techniques are employed to prepare data
for 2D visualization. The examples used in this chapter contain both sequential
and temporal data: data in the context of NLP and other areas such as climate
data. This chapter additionally explores the visualization method itself and
how to improve it to avoid misinterpretation. To conclude this work, Chapter 6
contains a summary and overarching discussion for this thesis.

Chapter 2 – Background In Chapter 2, background information about differ-
ent important aspects of this thesis is provided. This includes the topic of visual
analysis, the differences between sequential and temporal data, the main appli-
cation domains explored in this thesis (eye tracking and ML), background on
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determining requirements throughout the projects, and the employed evaluation
methods.

Chapter 3 – Visual Analysis of Temporal Eye Tracking Data Afterward,
in Chapter 3, two visual analysis methods for temporal data are presented,
especially dealing with RQ1 and RQ2. The proposed approaches can be used to
process and analyze eye tracking data.

The first work (Section 3.1) presents a visual analytics
approach to explore microsaccade distributions in high-
frequency eye tracking data. To detect microsaccades au-
tomatically, eye movement filter algorithms are commonly
used. However, it is observed that different studies may
employ different parameter values even when utilizing the
same algorithms. These parameter values describe impor-
tant properties of microsaccades such as the amplitude or duration. To address
this issue and ensure reproducibility in the analysis of microsaccade data, a
visual analytics system called Visual Microsaccades Explorer (VisME) is intro-
duced. The goal of this work was to create an interactive visualization system to
explore microsaccades in the context of the eye tracking data. I implemented the
system, performed the evaluation with use cases and a user study, and wrote
most of the paper. Daniel Weiskopf and Lewis Chuang (from LMU Munich)
supervised this project, gave advice, and revised the final paper. Sebastian
Pannasch (from Technische Universität Dresden) provided one of the datasets
and gave final feedback on the work. This work was published in the Journal of
Eye Movement Research (JEMR) [10]. The source code is publicly available via
Zenodo [8] and on GitHub (https://github.com/MunzT/VisME).

The second approach presented in Chapter 3 (Section 3.2)
is a visual analysis system for eye movement data from
two people playing virtual board games (i.e., online games)
against each other or in collaboration. The approach offers
different methods to synchronize and align gaze record-
ings and mouse click events from two eye tracking setups.
Analysts can then visually examine the joined data us-
ing a combination of techniques, including attention maps, gaze plots, and
a temporal summary that displays the distance between gaze positions and
shows temporal positions of mouse events. The idea for this work was by
Eugene Zhang and Kuno Kurzhals. The project started as a bachelor’s thesis
by Noel Schäfer [279], supervised by Tanja Blascheck, Kuno Kurzhals, Eugene
Zhang (from Oregon State University), and me. Noel Schäfer wrote the initial
source code. Together, we first created a demo paper for ACM Symposium on

https://github.com/MunzT/VisME
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Eye Tracking Research and Applications (ETRA) [13] and later an extension as a
full paper for the International Symposium on Visual Information Communication
and Interaction (VINCI ’20) [12]. I coordinated this project during the writing
phase, made some changes and extensions to the source code written in Java,
and created all visualizations for the papers and videos demonstrating our
work. Additionally, I wrote most of the text for the paper. Kuno Kurzhals
was responsible for the related work section, and Eugene Zhang strongly con-
tributed to the evaluation and its interpretation. Every author substantially
revised the final paper. I prepared and delivered the online presentation for the
conference. The source code is publicly available on DaRUS [11] and GitHub
(https://github.com/MunzT/ETFuse).

Chapter 4 – Visual Analysis of Deep Learning with Sequential Aspects In
Chapter 4, two analysis methods for NLP applications are presented: the first
focuses on the interpretability of NMT, and the second on VQA. Here, the
focus lies on RQ3 and partially on RQ1 and RQ2.

The first part of this chapter (Section 4.1) introduces a novel
interactive method for visually analyzing, comprehending,
and improving NMT. The system assists users in auto-
matically translating documents using NMT while also
identifying and correcting potential translation errors. The
corrections made by users can then be utilized to refine the
NMT model, which can lead to automatic improvements
in the entire document. This project was done in collaboration with the In-
stitute for Natural Language Processing (IMS) at the University of Stuttgart
and started as Paul Kuznecov’s master’s thesis, supervised by Thang Vu and
me. Paul Kuznecov created the base implementation for this approach. Later,
Dirk Väth joined the project. He was primarily responsible for maintaining the
ML-related areas of the project (e.g., adding the Transformer architecture to the
system and writing related parts in the paper). I coordinated this project during
the writing phase, implemented additional features and visualizations for the
system, improved its usability, and wrote most of the paper. This also included
the creation of all images for the paper and videos for demonstration. Dirk
Väth, Thang Vu, and Daniel Weiskopf contributed to polishing this work. The
initial paper [15] was published at Graphics Interface 2021 and was selected as
one of the top submissions. We were invited to submit a revised and extended
version of the article to the journal Computers & Graphics [19]. I prepared and
delivered the online presentation at the Graphics Interface conference. The source
code for the analysis systems of both paper versions [16, 18] is available on

https://github.com/MunzT/ETFuse
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DaRUS and GitHub (https://github.com/MunzT/NMTVis). The trained models are
also available on DaRUS [17].

Then, a new visual analysis system is presented to enhance
the interpretability of scene-graph-based VQA (Section 4.2).
This approach focuses on supporting users in detecting
and improving issues with the prediction due to poor scene
graphs. Additionally, with the help of interactive visualiza-
tions, users gain insights into the model’s decision-making
processes. Pascal Tilli (from the IMS at the University of
Stuttgart) and I devised the idea for this project. We formulated goals and ideas
for the approach. Together with Sandeep Vidyapu, we supervised the master’s
thesis of Noel Schäfer [280]. Noel Schäfer implemented the first version of
our approach with some support from Pascal Tilli and wrote most parts of
our International Symposium on Visual Information Communication and Interaction
(VINCI ’23) paper [25]. During the writing phase of the paper, Sebastian Künzel
joined the project, supported the supervision, wrote some paragraphs, and
created the visualizations and a video with Noel’s tool. I substantially revised
the paper, wrote most of the related work section, and gave advice. The scope
of the contributions to this work of Sebastian Künzel, Pascal Tilli, and me
was equal. Sebastian Künzel prepared and delivered the presentation at the
conference. We were invited to submit an extended version of our VINCI paper
to the journal Visual Computing for Industry, Biomedicine, and Art (VCIBA) [7].
Sebastian Künzel, Pascal Tilli, and I contributed equally to this publication with
a different focus. While Sebastian Künzel was mainly responsible for adding
new features to the implementation and for the user study, Pascal Tilli added
details about the underlying mechanisms of the VQA system. I was responsible
for the use cases and describing additional features of our interface. Each author
substantially revised the manuscript. The source code of this project is available
on DaRUS [26, 28] and GitHub (https://github.com/Noeliel/GraphVQA-Explorer).
Additionally, some supporting material is provided on DaRus [27]. I helped
with both the documentation and publication of these sources.

Chapter 5 – Projection-based Visual Analysis of Sequential and Temporal
Data In Chapter 5, projection-based analysis of sequential data is used in the
context of ML (hidden states as sequential data). Additionally, the limitations
of such a method for multidimensional time series projections are presented
together with new visualization methods for better interpretability. This chapter
deals especially with RQ3 and RQ4, but also RQ1 and RQ2.

https://github.com/MunzT/NMTVis
https://github.com/Noeliel/GraphVQA-Explorer
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First, a visual analytics approach is presented for ML ex-
perts who wish to analyze hidden states of layers within
recurrent neural networks (RNNs) (see Section 5.1). This
technique enables users to interactively examine how hid-
den states store and process information during the prop-
agation of the input sequence through the network. By
utilizing this method, users can gain insights into the pre-
diction mechanism. For example, they can determine which parts of the input
data have a greater influence on predictions and understand how the model
associates a specific output with a configuration of a hidden state. This work
is an extension of the work by Garcia and Weiskopf [129]. I used the available
material from the previous project (source code of Jupyter Notebooks that
were used for the creation of visualizations in this previous work) and created
an interactive visualization system based on Python 3, JavaScript, and D3.js
for the visualizations. I incorporated additional visualizations, a variety of
options for adjusting the visualizations and used color throughout different
visualizations more consistently. I updated and extended the original paper
to describe all new features adequately and added new examples. This in-
cludes the creation of all illustrations in the paper and a video with the help
of the interactive system. Rafael Garcia and Daniel Weiskopf gave advice and
helped edit the final version of the paper. The corresponding paper [5] was
published in the journal Visual Computing for Industry, Biomedicine, and Art
(VCIBA). The source code is publicly available on DaRUS [14] and GitHub
(https://github.com/MunzT/hiddenStatesVis). For the International Conference on
Data-Integrated Simulation Science (SimTech2023), I prepared a poster [24] with
supplemental material on DaRUS [23]. This poster is also based on this work.
Additionally, it contains content from Munz et al. [15, 19], which is presented in
Section 4.1 of this thesis. I summarized these works and highlighted their differ-
ences regarding the visual analysis approaches for ML. Sebastian Künzel and
Daniel Weiskopf gave feedback. I presented the poster at the conference.

While the previous approach uses dimensionality reduc-
tion to map hidden states to 2D for visualization, the sec-
ond approach in Chapter 5 (Section 5.2) focuses more on
the interpretability of such a technique. The focus lies on
addressing the challenge of visualizing multidimensional
time series data by projecting it into 2D space. New tech-
niques are introduced to handle and display projection
errors that may arise during the process of projection and visualization. To
represent the temporal nature of the data, successive time instances are depicted
as dots connected by lines or curves, indicating their temporal dependencies.

https://github.com/MunzT/hiddenStatesVis
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However, inaccurately projected data points, inconsistent variations in dis-
tances between projected time instances, and intersections of connecting lines
can lead to incorrect interpretations of the original data. To mitigate these
issues, novel methods are proposed to address and resolve these challenges
effectively. Daniel Weiskopf introduced me to the idea of this project. Af-
terward, its direction was refined multiple times. I created the source code,
and most of the paper was written by me. Additionally, I selected, prepared,
and analyzed the examples. Daniel Weiskopf continuously gave feedback and
helped finalize the publication. The source code is available on DaRUS [20]
and GitHub (https://github.com/MunzT/visualQuality), and some supplemental
material is available on DaRus [21].

Chapter 6 – Conclusion The last chapter includes a summary and a final
conclusion with an overarching discussion as well as ideas for future research
directions. Especially, the initially stated research questions are answered in the
context of the presented approaches.

Copyright

In this thesis, material from several publications is reused. This is done under
their respective copyrights and with the kind permission of all co-authors:

• Material from Munz et al. [10] is published by Bern Open Publishing in the
special thematic issue: Microsaccades: Empirical Research and Methodological
Advances. The work is licensed by the Journal of Eye Movement Research
under the Creative Commons Attribution 4.0 International License and
the copyright is held by the authors. It is allowed to share (copy and
redistribute the material in any medium or format) and adapt (remix,
transform, and build upon it for any purpose) the material.

• Material from Munz et al. [12] is published by the Association for Computing
Machinery (ACM) in the proceedings of the 13th International Symposium
on Visual Information Communication and Interaction (VINCI ’20) and the
copyright is held by the authors. The owners have the right to reuse any
portion of the work, without fee, in any future works written or edited
by the author, including books, lectures and presentations in any and all
media.

• Material from Munz et al. [13] is published by ACM in the ETRA ’20
Adjunct Proceedings: Symposium on Eye Tracking Research and Applications
Proceedings and the copyright is held by the authors.

• Material from Munz et al. [15] is published by Graphics Interface – Canadian
Information Processing Society, and the copyright is held by the authors.

https://github.com/MunzT/visualQuality
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Permission is granted to CHCCS/SCDHM to publish in print and digital
form, and ACM to publish electronically.

• Material from Munz et al. [19] is published by Elsevier Ltd in the Computers
& Graphics journal and the copyright is held by Elsevier Ltd. The authors are
granted (without the need to obtain further permission) the Author Rights,
including among others (e.g., personal use and internal institutional use)
the use of the manuscript by the authors in a subsequent compilation
of the author’s works or re-use by the author of portions or excerpts in
other works (with full acknowledgment of the original publication of the
Article).

• Material from Schäfer et al. [25] is published by ACM in the proceedings
of the 16th International Symposium on Visual Information Communication and
Interaction (VINCI ’23) and the copyright is held by the authors.

• Material from Künzel et al. [7] is published by Springer in the Visual
Computing for Industry, Biomedicine, and Art (VCIBA) journal, licensed
under the Creative Commons Attribution 4.0 International License, and
the authors hold the copyright. It is allowed to share (copy and redistribute
the material in any medium or format) and adapt (remix, transform, and
build upon it for any purpose) the material.

• Material from Garcia et al. [5] is published by Springer in the Visual
Computing for Industry, Biomedicine, and Art (VCIBA) journal, licensed
under the Creative Commons Attribution 4.0 International License, and
the authors hold the copyright. It is allowed to share (copy and redistribute
the material in any medium or format) and adapt (remix, transform, and
build upon it for any purpose) the material.

• Material from Munz et al. [24] is published by University of Stuttgart for the
International Conference on Data-Integrated Simulation Science (SimTech2023)
and the authors hold the copyright.

• Material from Munz and Weiskopf [22] is published by Elsevier B.V. on
behalf of Zhejiang University and Zhejiang University Press Co. Ltd in the
Visual Informatics journal, licensed by the publisher under the Creative
Commons Attribution 4.0 International License, and the authors hold the
copyright. It is allowed to share (copy and redistribute the material in any
medium or format) and adapt (remix, transform, and build upon it for
any purpose) the material.

Additional Contribution

During the time I worked on this thesis, I contributed to further publications,
but their content is not part of this work:
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The approach to generate an overlap-free version of generalized Pythagoras
trees for hierarchy visualization [9] is based on a project I worked on as a
graduate student, and that was published afterward [1, 2]. The extension was
done in collaboration with the Eindhoven University of Technology and the
University of Duisburg-Essen. Toon van Benthem and Yoeri Poels did a student
project supervised by Michael Burch where they implemented an overlap-free
version of the original work. Fabian Beck asked me to join the project during
the writing phase of the paper. I was responsible for creating the visualizations
with the students’ system and implemented a different color scheme to make
the visualizations look more appealing. Additionally, I helped finalize the
paper. This work was published as a short paper in the proceedings of the
IEEE Visualization Conference (VIS). I presented this work at the corresponding
conference in Vancouver. Daniel Weiskopf gave advice on the paper and revised
the final version of the paper and presentation. The source code, for which
I implemented the current color scheme and created the documentation, is
available on GitHub (https://github.com/Benthem/FDGPT).

Another work introducing an interactive visual comparison system for classifiers
started as the master’s thesis of Frank Heyen [153]. Michael Sedlmair, who
supervised this work with me, developed the original idea. Frank Heyen did
most of the work, ranging from implementing the visualization system and
performing user studies to writing most of the publication. Michael Neumann
and Daniel Ortega from the IMS at the University of Stuttgart contributed to
the user study. Throughout the master’s thesis and when writing the paper, I
contributed with advice. Additionally, I revised the paper. The source code is
available on GitHub (https://github.com/fheyen/ClaVis).

Supervised Student Projects

I supervised multiple student projects during my research. Some of them were
used as a base for subsequent publications, where some of the content can also
be found in this thesis. These are the student projects I (co-)supervised that
took place during this time. Daniel Weiskopf was the examiner for each thesis
if not mentioned otherwise.

• Master’s thesis by Paul Kuznecov [196]: “A visual analytics approach for
explainability of deep neural networks.” Co-supervised by Ngoc Thang
Vu. Examined by Daniel Weiskopf and Ngoc Thang Vu. This thesis was
the base for the approach by Munz et al. [15, 19], which is also presented
in Section 4.1 of this thesis.

• Bachelor’s thesis by Jamie Ullerich [317]: “Stimulus generation software
for the analysis of smooth pursuits.” Co-supervised by Antoine Lhuillier.

https://github.com/Benthem/FDGPT
https://github.com/fheyen/ClaVis
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• Bachelor’s thesis by Noel Schäfer [279]: “Visuelle Eye-Tracking-Analyse
bei kooperativen Spielszenarien.” Co-supervised by Tanja Blascheck, Kuno
Kurzhals, and Eugene Zhang. This thesis was the base for the approach
by Munz et al. [12, 13], which is also presented in Section 3.2 of this thesis.

• Master’s thesis by Frank Heyen [153]: “Visual parameter space analysis
for classification models.” Co-supervised by Michael Sedlmair and Ngoc
Thang Vu. Examined by Michael Sedlmair. This thesis was the base for
the approach by Heyen et al. [6].

• Master’s thesis by Shashank Ramesh Salian [275]: “Deep visualization for
MR-based biological age estimation.” Co-supervised by Karim Armanious
and Sherif Abdullatif.

• Bachelor’s research project by Daniel Bin Schmid, Pascal Walloner, and
Satoaki Eitschberger [277]: “A curated collection of multivariate time
series for visualization benchmarks.” Co-supervised by David Hägele.
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Background

This thesis aims to present several visual analysis approaches. Different data is
employed, with a focus on sequential data: especially data from eye tracking and
output from ML models. Additionally, dimensionality reduction techniques
are used to create visualizations for temporal data. This chapter provides
an overview of relevant background information on related topics, including
information on visual analysis, characteristics of sequential data, a description
of eye tracking and supervised/unsupervised ML, details on determining the
requirements, and an overview of evaluation methods.
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This section contains content from the following publications:

• S. Künzel, T. Munz-Körner, P. Tilli, N. Schäfer, S. Vidyapu, N. T. Vu, and D. Weiskopf.
Visual explainable artificial intelligence for graph-based visual question answering
and scene graph curation. Visual Computing for Industry, Biomedicine, and Art (VCIBA),
8(1):9, 2025, doi: 10.1186/s42492-025-00185-y [7].

• T. Munz-Körner and D. Weiskopf. Exploring visual quality of multidi-
mensional time series projections. Visual Informatics, 8(2):27–42, 2024, doi:
10.1016/j.visinf.2024.04.004 [22].

• T. Munz-Körner, S. Künzel, and D. Weiskopf. Poster: Visual-explainable AI: The use
case of language models. In International Conference on Data-Integrated Simulation
Science (SimTech2023), 2023, URL: https://www.simtech2023.uni-stuttgart.de/
documents/Theme-2/Munz-Koerner-Tanja.pdf [24].

• T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf. Visualization-based
improvement of neural machine translation. Computers & Graphics, 103:45–60, 2022,
doi: 10.1016/j.cag.2021.12.003 [19].

• T. Munz, L. L. Chuang, S. Pannasch, and D. Weiskopf. VisME: Visual microsaccades ex-
plorer. Journal of Eye Movement Research, 12(6), 2019, doi: 10.16910/jemr.12.6.5 [10].

2.1 Visualization and Visual Analysis

Information visualization is a great means to explore data and gain insights.
With graphical representations of the data, information is easily accessible to
humans for their interpretation. Such visualizations enable efficient data explo-
ration and help identify patterns and outliers. Typical visualizations include
charts, scatterplots, histograms, heatmaps, trees, graphs, and maps. Informa-
tion visualization specifically focuses on the preparation and visualization of
abstract data.

Visual analysis is the process of examining, understanding, and interpreting data
using visual representations. The goal is to gain insights into the oftentimes
complex, large, and possibly multidimensional data. Visual analysis helps
users discover patterns, trends, anomalies, and hidden relationships. Visual
analytics [85, 182, 308] is a related concept. Here, a combination of interaction
techniques, computational resources, and human abilities, such as perception
and cognition, are combined to explore the data. Through the help of interactive
tools and techniques, users are supported in interacting with and adapting
the visualizations. Interaction and filtering techniques can, for example, help
users link corresponding data elements in different views that represent the
same data or change the type and amount of information currently being
visualized. This allows users to perform different tasks with the underlying
data, understand it better, and answer various questions about the data. The
terms visual analysis and visual analytics are also used interchangeably to relate to

https://doi.org/10.1186/s42492-025-00185-y
https://doi.org/10.1016/j.visinf.2024.04.004
https://www.simtech2023.uni-stuttgart.de/documents/Theme-2/Munz-Koerner-Tanja.pdf
https://www.simtech2023.uni-stuttgart.de/documents/Theme-2/Munz-Koerner-Tanja.pdf
https://doi.org/10.1016/j.cag.2021.12.003
https://doi.org/10.16910/jemr.12.6.5
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the concept of analyzing and extracting insights from visual data representations.
Both approaches can involve interactive visualizations and analysis techniques.
Throughout this thesis, these terms are not strictly separated. Their usage
in the different chapters primarily relates to the use of terms in the related
publications.

The book edited by Thomas and Cook [308] is centered around visual ana-
lytics. It contains the following description: “People use visual analytics tools
and techniques to synthesize information and derive insight from massive, dynamic,
ambiguous, and often conflicting data; detect the expected and discover the unex-
pected; provide timely, defensible, and understandable assessments; and communicate
assessment effectively for action.”

In their work [308], different focus areas are defined:

• Analytical reasoning techniques play an important role, especially in gaining
insights and decision-making. In this thesis, this is a crucial aspect, for
example, when debugging a complex ML system or correcting translation
results.

• The visual representations and interaction techniques are crucial to exploring
the data. Interaction techniques, in addition to visualizations, are valuable
to explore and understand a considerable amount of data. In this work,
different interaction techniques are used to allow users to analyze the
data in various ways and from different perspectives. Often, different
input data requires specific interactive visualization-based approaches for
meaningful exploration. In the following chapters, several methods are
introduced.

• Data representations and transformations are essential for the actual data
visualization. Data may be preprocessed through transformations to be
visualized in a reasonable and accessible way. This thesis uses techniques
such as extracting important information, joining data from different
sources, filtering for subsets of the data, and projecting data with di-
mensionality reduction techniques. Such preprocessing is a key step
involved throughout this thesis. Different preprocessing steps are used for
each visualization system presented in the following chapters, to enable
meaningful visualizations.

• Methods for the production, presentation, and dissemination of analysis results
are essential to share the final results with others as images, videos, or
integrated into presentation slides. The visualizations created by the
systems presented in this thesis can be used for this purpose.

Overall, information visualization, visual analytics [182, 308], and the visual
analysis process in general, can be advantageous approaches in developing
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visual exploration systems across various domains. Adding interaction tech-
niques for visualizations is crucial for complex data analysis and for supporting
the analysis process. Users can extract significant information and perform
a detailed exploration of the data through interaction and filtering. A key
technique is here the use of multiple visualizations in coordinated views [273].
This means that different aspects of the data can be shown simultaneously, and
changes may affect all visualizations at the same time. With the help of brushing
and linking [332], users may select elements in one of the visualizations, and
all additional visualizations show corresponding information or updates. This
technique helps better understand connections between the data. Interactive fil-
tering enables the dynamic adjustment of the type and quantity of data used for
the visual representations in real-time. Often, making interactive adjustments
to settings can modify how the visuals are presented and perceived. Tooltips
play a crucial role in connecting quantitative and visual information by offering
additional numerical or textual details. They can be shown on demand when
the mouse cursor is moved over certain visual elements. This supports users
gain a deeper understanding of the visual elements. Generally, combining such
techniques helps better explore and understand the data.

2.2 Sequential and Temporal Data

Sequential data can be characterized as a sequence of successive observations
where the order of data points is crucial. Such data is available in many domains
of different sizes and complexities. Temporal or dynamic data is a subset of
sequential data. Here, timestamps specify the order of the data. Temporal data
includes, for example, weather data, eye tracking data, the training process in
ML, or any other data that is provided with timestamps. A time series is a
typical example of temporal data where data points are usually recorded at a
specific time interval, for example, every second. A sentence or a whole text
document is an example of sequential data without timestamps but where the
order of words is essential. When processing text, this process can also create
a time series, e.g., when the next word is always processed in the next time
step. The previous description mentioned that there is a difference between
sequential data and its subset, temporal data. However, these two terms are
sometimes also used interchangeably without clear differentiation. It is also
important to note that the term time series can also refer to a sequence without
explicit timestamps, particularly when the focus is on the sequential process in
which the data is being used.

While sequential data usually consists of one sequence of successive data
elements in a row, it is also possible that several branches represent different
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alternative paths, similar to the branching in a tree. Additionally, the various
branches may later merge again.

The dimensionality of sequential data can vary depending on its origins and
influence how it can be explored and visualized. While temperature obser-
vations for one location consist of only one dimension, weather observations
with different measurements for one location usually consist of multiple di-
mensions. When not just one location is explored but a large area or multiple
different places, many dimensions are available at each time step, leading to
even high-dimensional data.

In the context of this thesis, sequential and temporal data primarily used include
data from eye tracking (considered as time series) and text sequences (processed
as sequences) in the context of ML. More details about these two domains
follow in Section 2.4 and Section 2.5. Besides these data types, further sequential
information is being analyzed in addition (such as events occurring at specific
times (Section 3.2)). This work also uses some data from other sources: video
clips (earth observations) and simulation data (see Section 5.2). To explore
complex behaviors, it is sometimes not enough to look at only the sequential
components of a method and ignore further data sources. Therefore, non-
sequential data is used as input in this thesis as well, e.g. images (Section 3.1)
and scene graphs (Section 4.2).

Different aspects are essential in analyzing sequential data: Beyond the dimen-
sionality and origins of the data, the target groups and analysis goals play a
crucial role in the choice of visualization design and interaction techniques.

2.3 Visual Analysis of Sequential Data

Sequential data, particularly temporal data, exists all around us, and its ex-
ploration is highly significant. Therefore numerous approaches exist for the
visualization of temporal data [32, 33, 121, 311] and event sequences in gen-
eral [140].

The simplest form of sequential or temporal data is one-dimensional. This
means a series of values is given in a specific order, possibly with timestamps.
A line chart is a straightforward visualization technique where the order or time
is plotted on one axis and numerical values on the other. For multidimensional
data, multiple curves can be displayed in the same diagram or as small multiples
adjacent to each other. Stacked area charts [302] are an extension of line charts
showing multiple curves where the individual magnitudes are stacked on top
of each other. This way, it is also possible to see aggregated values at each step.
The areas in between are filled in different colors or patterns. ThemeRivers [145]
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and horizon graphs [147] are an extension hereof. Instead of using curves to
visualize the values of instances, it is also possible to use bar charts. Here, the
height of the bars represents the values, and it is possible to stack multiple
bars on top of each other or plot them adjacent to each other. While this
method can be used for individual time steps, it is also helpful for aggregated
intervals. If categorical data has to be presented, matrices are an option. Again,
time is plotted on one axis and the category or categories along the other one,
potentially using properties like color for additional dimensions (see Section 5.1
for an example). Besides using a rectangular coordinate system, the data can
instead, for example, be plotted circularly [357] or on a spiral [335]. This can be
applied to curves, bar charts, matrices, or other representation forms, and it may
be helpful in identifying circular patterns. Additionally, there are techniques
that were initially not designed for sequential data, but they are also applicable
for creating visualizations for such data. For example, tree representations can
be employed for branching over time to show possible alternative paths (e.g., as
used by Strobelt et al. [301] and in this thesis in Section 4.1 for the beam search
visualization). Graphs (e.g., as used by Collins et al. [92]) are used when the
data merges again later in time.

If the sequential data has a spatial component, locations can be plotted on a
2D plane where lines connect individual instances. This can be used to show
geographical locations on a map or in eye tracking. For example, a scanpath or
gaze plot [238, 239, 347] (see Chapter 3) can depict the eye movement over time
on a screen. If we extend such an approach, we can even create 3D plots where
the order or time is mapped to an additional axis. An example is a space-time
cube [44]. However, additional interaction techniques to rotate the cube might
be necessary due to occlusion.

Sequential data can also be represented through animation [49]. This is intu-
itive for temporal data since time is mapped to time. However, it might be
challenging to follow the temporal changes and compare the data at different
times.

If the exact sequential development is not of interest but instead summarized
statistical information about all data samples, different types of charts can be
used. This includes, for example, histograms and scatterplots. We use this
method in Section 3.1 to show aggregated temporal information for specified
time periods.

Creating a meaningful visualization might sometimes be challenging since data
can be multi- or high-dimensional. Here, dimensionality reduction techniques
are a frequently employed method to reduce the dimensionality of the input
data. With dimensionality reduction (e.g., principal component analysis (PCA)
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or t-SNE), multidimensional time series data can be mapped to 2D or 3D for
visualization and analysis [35, 45]. In such visualizations, the data samples
are represented as dots that are connected by lines to show their sequential
order. This approach may reveal important characteristics and patterns of the
underlying data [45]. However, when projecting data to a lower-dimensional
space, it is necessary to consider that not all important information can be
maintained, and projection errors and artifacts can be introduced. Additionally,
the interpretation of the resulting visualizations might be challenging. In
Chapter 5 we use such an approach for the visualization of the temporal
development; Section 5.2.1 contains more details about this approach.

Many more visualization and visual analysis techniques exist for sequential
data. These include combinations and extensions of existing approaches [173],
or specifically designed new visualizations. Interactive systems or dashboards,
in particular, allow a combination of different visualization types in coordi-
nated multiple views [273] and support visual analysis through interaction
techniques such as brushing and linking [332], filtering, aggregated information,
and details on demand. This enables the exploration of larger datasets with
many dimensions and a study from different perspectives. Often, specific visual
analysis approaches are developed for individual use cases by combining exist-
ing visualization methods. An example is the approach by Burch et al. [4] for
time-varying weighted digraphs with a hierarchical structure. Multiple different
visualizations are used: a layered icicle plot [188] as hierarchy visualization, a
matrix visualization for the temporal development of edge weights, and parallel
stacked lines for edges that summarize information over time. Similarly, devel-
oper rivers [3] use a visualization as a combination of ThemeRivers [145] and
Sankey diagrams [315] (a visualization showing the direction and magnitude
of flows) in an interactive visualization approach for the analysis of software
development processes. The visual analysis approaches proposed in this thesis
also use a combination of different visualization methods and extend them for
the specific use cases.

The data domain and target groups for visual analysis systems play an ad-
ditional significant role in determining the design and functionality of such
systems: Domain experts have extensive knowledge and expertise about the
specific type of data and may have different requirements for visualizations and
interaction techniques than non-experts. Experts may require more advanced
tools and functionalities to perform tasks like debugging and conducting in-
tense data analysis. Additionally, their knowledge allows them to understand
complex visualizations and to use advanced features for in-depth explorations.
Non-experts do not possess the same level of specialized knowledge but are
still interested in exploring the data. Therefore, they may have other goals in
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Saccade
Fixation

Microsaccade

Figure 2.1 — Raw gaze positions are represented by dots connected by lines:
gaze positions (together with their connections) that are labeled as fixations
are black, as saccades gray, and as microsaccades pink. Each sequence of gaze
positions that is marked as a fixation begins with a small white-filled circle and
ends with a black circle. Additionally, an overlaid representation of a scanpath
shows the averaged positions of fixations (blue) and saccades (yellow).

the exploration of the same data and may enjoy intuitive visualizations that are
easy to understand and interact with. This may include finding patterns and
gaining insights from a simpler system design with limited interaction.

2.4 Eye Tracking

One of the application domains considered in this thesis is eye tracking [158].
Eye tracking is used to record the eye movement of people looking at some
stimulus. It is a typical example where real-world temporal data is collected.
Visual analysis can here be used to gain deeper insights into eye movements
and patterns related to cognitive aspects such as visual attention. Eye tracking
is used in areas such as psychology, neuroscience, human-computer interaction,
market research, and advertisement. The goals are, among others, to understand
the visual attention and perception of humans and the improvement of the
usability of interfaces.

Eye tracking data are often large datasets of time series consisting of gaze
positions before feature extraction. Gaze positions are the locations on a screen
or in a person’s field of vision that someone is looking at. Figure 2.1 shows
an example of the spatial locations of gaze positions. They are drawn as dots
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Saccade

Fixation

Microsaccade

Figure 2.2 — A timeline illustrates the gaze positions in the x (orange) and y
(turquoise) direction, as well as the velocity (gray). Additionally, the areas of
fixations (blue), saccades (yellow), and microsaccades (pink) are marked. The
same data as in Figure 2.1 is presented.

that are connected by lines to show the temporal connections. After extracting
eye movements from the raw data, a scanpath illustrating basic eye movements
(fixations and saccades) can be used to analyze these eye movements (circles
and connecting lines in Figure 2.1). Figure 2.2 shows the same information
that is visible in the scanpath (x and y directions of the gaze positions and eye
movements) as a timeline.

Eye tracking data itself is relatively low-dimensional: for each time step, the
coordinates where someone looked and possibly additional information such
as pupil dilation. However, its analysis can be very challenging. Eye tracking
experiments also include the stimulus, multiple participants, and different
eye movements determined from the raw data (e.g., fixations, saccades, and
microsaccades) that can be detected in various ways. Additionally, each eye
tracking study has its own analysis or research goals that may require individual
evaluation techniques in the analysis process.

This thesis uses eye tracking data as an example of temporal data. For their
visual analysis, two approaches are presented (see Chapter 3). This section
provides an overview of eye tracking properties, how data can be collected, a
differentiation of eye movements, filters for their detection, and a survey of
visualization and visual analysis approaches for gaze data.

2.4.1 Data Properties and Collection

Different types of eye tracking devices can be used to record the gaze positions
of individuals for analysis purposes. The properties of the collected data vary,
for example, in the type of stimulus being viewed, sampling rates, and the
number of eyes being recorded. During recording, a series of positions (x and
y values) with timestamps are captured, and sometimes additional properties
such as pupil dilation.
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The gaze is recorded with a specific sampling rate (frequency), depending on
the eye tracker’s hardware properties and analysis goals. The sampling rate
defines the number of samples (gaze positions) recorded during one second; it is
measured in Hertz (Hz). While for detecting some eye movements, a sampling
rate of 30 Hz [108] can be sufficient, smaller eye movements require much higher
recording frequencies for their detection. With the help of newer technology,
it is even possible to record with frequencies up to 2000 Hz (occasionally even
higher [131] when using specific hardware) and achieve results with very high
accuracy. For all eye movements applies: the higher the sampling rate, the
better and more precise their detection.

The gaze recording can be either monocularly or binocularly. In comparison,
the first type captures only the movement of one eye, whereas the latter records
both eyes. This influences the analysis since both eyes do not move in exactly
the same way.

A crucial role in eye tracking is played by the accuracy and precision of record-
ings [158]. Accuracy is the offset between the recorded gaze position and the
actual gaze position where someone is looking. Precision indicates the spread
of repeated measurements of the same gaze position. These two properties are
important for high-quality recordings. Therefore, eye tracking devices often
have to be calibrated for individuals before recording to allow good recordings.
These properties also highly depend on the tracking conditions. For example,
when the subject’s head is stabilized, and an experiment is performed in a con-
trolled environment, the quality is usually better than when people can move
freely with head-mounted devices while their gaze is being recorded. However,
environmental factors like light sources and participant factors such as pupil
size or glasses can also affect the recordings’ precision and accuracy.

The movement of the eye is typically measured in visual degrees (◦) or min-
utes (′), with 1◦ = 60′. The visual angle represents the rotation of the eye that eye
tracking systems measure. When working with stimuli presented on a monitor,
eye tracking software usually outputs coordinates measured in pixels (px) on
the screen rather than as a visual angle. Therefore, for the analysis, calculating
the corresponding visual angles is often necessary. It is possible to calculate a
value for pixels per degree (ppd) [px] that can be used to transform the gaze
positions into visual angles. ppd can be determined from the distance to the
screen (d [cm]), the width (or height) of the screen (w [cm]), and the horizontal
(or vertical) resolution of the screen (r [px]):

ppd =
r · π

360 · arctan( w
2d )
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Infrared 

illuminator

Camera

Figure 2.3 — A remote eye tracking
setup consisting of a monitor, an in-
frared illuminator, and a camera to
record the eye movements.

The visual angle α [◦] can then be calculated for a pixel value v [px] (i.e., a
distance measured in pixels) as follows:

α = v/ppd

Most eye tracking devices can be classified into one of three categories: The
first one utilizes attachments to the eye, such as special contact lenses with
embedded mirrors or magnetic field sensors [108]. The movement of these
attachments is measured. The next type measures electric potentials between
electrodes placed around the eyes to detect changes in the eye position [108].
The final one operates without direct contact with the eye using optical tracking.
In such a method, light (e.g., infrared) is reflected from the eye and detected by
a camera or another optical sensor. The captured information is then analyzed
to determine the eye rotation based on reflection variations. Video-based
eye trackers are currently the most commonly used hardware solutions in
eye tracking technology [108]. They belong to the third category previously
mentioned. Such eye trackers are easily applicable due to their non-invasive
nature (i.e., without contact with the eyes). These systems use cameras to
capture videos of the eyes and analyze the movement of features like the pupil
or corneal reflection [108].

This thesis uses only recordings from remote (or desk-mounted/stationary)
video-based eye tracking devices. Typically, they consist of a monitor and a
camera that records the reflection of the eyes illuminated by infrared light (see
Figure 2.3). Using such a system, a person sits in front of the monitor, sometimes
using a chin rest to stabilize the head and maintain a constant eye position
during recording. In this thesis (Chapter 3), data from the Tobii T60XL is used
for binocular recordings at a frequency of 60 Hz, from Tobii Pro Spectrum
1200 recording binocularly at 1200 Hz, and from SR Research EyeLink 1000
(Figure 2.3) recording binocularly at 500 Hz. Generally, this type of recording
device allows very detailed and high-resolution recordings, and the recorded
data is usually very accurate and precise. The higher the sampling rate, the



28 Chapter 2 • Background

smaller eye movements can be detected and explored. Therefore, the first eye
tracking device (Tobii T60XL) is better suited for an exploration of fixations
and saccades, whereas the others also allow an investigation of very small eye
movements such as microsaccades.

2.4.2 Eye Movements

Our eyes constantly move. When the gaze locations are recorded, coordinates
of the gaze positions on the stimulus are captured. Afterward, the movement
of our eyes can be aggregated into different eye movements for analysis (see
Figure 2.1 and Figure 2.2 for some examples). Eye movements consist of
voluntary and involuntary movements of the eyes [158]. These movements help
acquire, fixate, and track visual stimuli. There are some basic types of voluntary
eye movements used to explore the world around us: best known are fixations
and saccades.

A fixation is the state when the eye remains more or less still over a period of
time [158]: when our eyes fixate on one location, e.g., on an object. However,
during this phase, the eye is never entirely still. Even when fixating, our eyes
move slightly, but we do not notice it. Usually, fixations occupy a region of
0.5 − 2.0◦, have a minimum duration of 50 − 250 ms, and a maximum velocity
of 10 − 50◦/s [158]. Three different types of micro-movements are distinct
within fixations: tremors, drifts, and microsaccades [158]. They are known as
intra-fixational eye movements, and all of them are involuntary.

The second voluntary eye movement is a saccade [158]. Saccades are very fast
movements of both eyes simultaneously when they change the fixation position
(e.g., from one object to another). Saccades are used to observe the world
around us. They last about 30 to 80 ms, the velocity is typically in the range
30 − 100◦/s, and they have an acceleration of 4000 − 8000◦/s2.

In contrast, the third type of voluntary eye movement, known as a smooth
pursuit [158], is a smooth rather than a sudden movement. Smooth pursuits are
much slower than saccades (a velocity less than 30 − 40◦/s) and occur when
following an object on a moving stimulus (e.g., following a bird across the
sky). In this work, smooth pursuits are not considered. It is expected that
the gaze data does not contain them. If they exist in the data, they might be
misinterpreted as the filters used in this thesis do not recognize them.

As previously mentioned, there exist involuntary eye movements within fix-
ations. Typically, we are not aware of any of these movements. They serve
to correct the gaze to the fixation position. Tremors [158] are very fast and
very small eye movements. They are the smallest eye movements, and their
exact role is unclear [217]. Drifts [158] are slow movements that take the gaze
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away from the center of a fixation. They play a role in sustaining precise vi-
sual fixation when microsaccades are absent [217]. These two eye movements
occur between microsaccades [217]. Microsaccades [158] (sometimes referred
to as fixational saccades [210]) are small and fast eye movements with a small
amplitude, like tiny versions of normal saccades. They can be distinguished
from regular saccades according to their amplitude and velocity. This type of
eye movement plays a special role in this thesis. Prerequisites to detect them
with an eye tracking system is a high frequency that should be more than
200 Hz [158]. However, most studies exploring microsaccades use devices with
a frequency of 500 or even 1000 Hz (e.g., Engbert and Kliegl [111]) to capture
them accurately. Their amplitude is not well defined: different information can
be obtained from different published sources. However, most research uses a
threshold of 1◦ for the amplitude (see Table 3.1 on page 60). Their contribu-
tion to visual perception is still not entirely understood. A few microsaccades
serve the purpose of bringing the eye back to its original fixation location [158].
Others move the eye away from the intended fixation point, preventing the
retinal image from fading [186]. It is also assumed that they are indicating
covert attention. Previous studies have found that the location of attention of
the viewer influences the rate and direction of microsaccades (e.g., Engbert and
Kliegl [111], Engbert and Mergenthaler [113], Hafed and Clark [141], Hermens
and Walker [149], Laubrock et al. [200], Pastukhov and Braun [247]). The pre-
sentation of an irrelevant stimulus or sound may also have an influence on
microsaccades [186]. Properties of microsaccades that may be interesting during
exploration include their direction (orientation), amplitude (angular distance),
duration, velocity/speed, acceleration, curvature, position within fixations, and
number of occurrences.

Besides these eye movements, some further movements very similar to microsac-
cades should be mentioned. Many saccades do not stop directly at the intended
target, but the eye slightly fluctuates before coming to a stop. This post-saccadic
movement is called glissade [158] (and sometimes overshoot). Glissades are quite
common: between 20% and 40% of saccades end in glissades [158]. They are
used to realign the eye before a steady fixation [336]. While glissades do not
actually belong to fixations or saccades, in filtered data (using automatic eye
movement detection algorithms), they are often located in the temporal areas
classified as fixations, sometimes saccades. In the analysis of such data, the
question arises as to whether these movements should be detected as microsac-
cades or not. The experiments in this thesis showed that the EyeLink gaze
filter adds them to the fixations. Therefore, they are detected and characterized
as microsaccades by many microsaccade detection algorithms applied to the
temporal sequences of fixations. Additionally, the usage of the term glissade
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varies across the literature. In various papers, these eye movements are handled
differently (e.g., Bahill et al. [47], Deubel and Bridgeman [103], Weber and
Daroff [336]), and it is not entirely clear what exactly belongs to this type of
eye movement [158]. For example, Abadi and Gowen [30] do not differentiate
between microsaccades and glissades. In this work, we regard as glissades all
types of high-velocity over- and under-shoots directly succeeding saccades [158]
(compare Section 3.1). Square-wave jerks [158] are another eye movement similar
to microsaccades. Each square-wave jerk consists of a small saccade that moves
the eye away from the visual target and a small saccade in the opposite direction
back to the target. Therefore, they basically consist of pairs of small saccades
(like two microsaccades) in opposite directions, parted by a short period of
time (e.g., 200 − 400 ms [120]). The physical appearance of small saccades,
microsaccades, glissades, and the beginning and end of square-wave jerks are
very similar; the same algorithms can determine all of these types of movements.
Sometimes, the terms are even used interchangeably. Square-wave jerks are,
for example, mentioned in the literature as a “pair of back-to-back opposing
microsaccades” [141].

2.4.3 Eye Movement Filters

Many different approaches exist to detect eye movements. Typically, experi-
enced eye movement researchers manually classify and label eye movements.
This process is very time-consuming but usually very accurate. Some re-
searchers only trust manually determined eye movements. Algorithms can help
detect eye movements from the raw data containing gaze positions. These auto-
mated approaches consider properties such as velocity, acceleration, dispersion,
and duration [158]. Methods based on properties require that the parameters
for algorithms are well selected since, otherwise, the detected movements may
be wrong. Modern methods also use ML to extract eye movements automati-
cally [54]. After automated detection, eye movement researchers still have to
verify that the detected eye movements are adequate, e.g., concerning the correct
sequences of gaze positions used for labeling as some eye movement.

Usually, the software of eye tracking devices has built-in features for detect-
ing basic eye movements and can immediately return the results for fixations
and saccades, possibly also for blinks and other properties. Additional algo-
rithms independent of these systems can also determine these and other eye
movements.

There are two base types of algorithms that analyze the properties of the gaze to
detect eye movements: Velocity- and acceleration-based approaches [158] (e.g.,
velocity-threshold fixation identification (I-VT) [276]) use velocity or acceleration
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to detect eye movements; this is a method used, e.g., by Tobii and SR Research
and that requires a minimum recording frequency of 200 Hz. This method
can be used to detect both fixations and saccades. Dispersion- and duration-
based algorithms [158] (e.g., dispersion-threshold identification (I-DT) [276])
use positional information and a form of clustering to detect fixations. They
can especially be used for detecting fixations and also operate for recordings of
a lower speed. For microsaccades, the algorithm by Engbert and Kliegl [111]
is often used. This algorithm uses a velocity threshold and can be allocated
to the first group of algorithms. Depending on the selected parameters, it can
even be used to detect regular saccades. This algorithm is also described on
page 62 in Section 3.1.3 for the microsaccade and saccade filter we use in VisME
(Section 3.1).

A common approach for detecting fixations assumes that what is not a saccade
is considered a fixation [158]. This is especially problematic when someone
wants to explore microsaccades: glissades are then included in the temporal
area of fixations. Automated analysis of these temporal intervals may then
categorize glissades as microsaccades.

Since different algorithms exist for detecting different eye movements, and
many of them have different parameters that influence the detection of eye
movements, directly comparing the results between various studies and repro-
ducing experiments is challenging. This topic is also explored in Section 3.1 for
the case of microsaccades, where a method for reproducibility and verification
of research results is presented.

2.4.4 Visual Analysis of Eye Tracking Data

Current software systems for eye tracking devices allow, besides the recording,
the (visual) exploration of collected data (e.g., Tobii Pro Lab, EyeLink Data
Viewer). However, in such a system, the analysis is often limited to basic
visualizations. Specific analysis tasks frequently require unique visualization
solutions.

The analysis of eye tracking data can be done with raw data (e.g., x and y
positions), on filtered eye movements (e.g., fixations and saccades), or areas of
interest (AOIs). In this thesis, only the first two methods are used.

There exist many different visualization techniques for eye tracking data [60].
Typically, timeline visualizations can be used to explore the temporal movement
of the eye. Since eye tracking data consists of both temporal and spatial
information, scanpaths (or gaze plots) [238, 239, 347] and attention maps (or
heatmaps) [158, 294] are suitable to show detailed eye movements and summary
visualizations of the gaze. Scanpaths show fixations and saccades as circles
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connected by lines to visualize where a person looked. Overplotting might be
an issue depending on the amount of data being visualized. Using animation
and limiting the visualized elements to only a short time frame can circumvent
this. Instead, attention maps summarize the gaze positions for a given interval
or a whole trial to show where the highest attention of a person was. They
highlight in the form of a color overlay where someone looked most. Timeline
visualizations are used in Section 3.1, scanpaths in Section 3.1 and Section 3.2,
and attention maps in Section 3.2.

Eye tracking data of one person is usually relatively low-dimensional (e.g., x
and y coordinate, pupil dilation, duration of eye movements). Therefore, the
previously described visualization approaches are well suited for exploring
the data of one trial of one person in detail. Often, the analysis of the gaze of
multiple people is required though, for which the comparative and aggregated
analysis is usually more challenging. First, more data is available that has
to be shown simultaneously for analysis and comparison. Second, it might
be necessary to merge and summarize the data from different devices with
possibly different hardware properties to present relevant information to the
end-user (see Section 3.2). In general, beyond the eye tracking data, additional
information might be included in the analysis. This could be the categorization
of the trials into different tasks or additional temporal events (e.g., when
something specific happened). Then, more advanced visualizations are required
that also include these additional information.

2.5 Machine Learning

ML is a sub-field of artificial intelligence (AI) that is currently very popular
and used in many different domains. Whereas AI has the general goal of
imitating human intelligence, ML focuses on extracting information from data
to solve specific tasks by identifying patterns. Application domains include
NLP, computer vision (CV), and many more. In this thesis, both unsupervised
and supervised learning methods are used. While unsupervised learning uses
unlabeled data, supervised learning requires labeled data to train a model.
For each category, many different approaches and algorithms exist with dif-
ferent properties and goals. While results created with ML approaches can be
impressive, they are not always correct or as expected.

ML can be involved in the visual analysis process for sequential data in various
ways. Data generated with ML approaches (e.g., internal states or prediction re-
sults) can be used as input data for data analysis, or ML approaches themselves
can be used to analyze some data. In this thesis, approaches for both types are
presented. Multiple projects use supervised learning techniques (particularly
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DL) to generate data for analysis (see Chapter 4 and Section 5.1), while in
others, unsupervised learning is used for the analysis process (see Chapter 5).
Section 5.1 presents an approach that combines both methods: the input data
originates from a classification model (supervised learning), and in the analysis,
dimensionality reduction techniques (unsupervised learning) are used.

This section provides an overview of relevant ML background considering both
unsupervised and supervised learning and some specific topics used in this
thesis, such as dimensionality reduction techniques [320], NLP, NMT [297, 305],
VQA [41], text classification, and different types of neural networks (NNs).
Additionally, it provides a short overview of visual analysis used in the area
of ML, especially targeting XAI to provide a better understanding of internal
mechanisms of ML approaches.

2.5.1 Unsupervised Learning

In unsupervised learning, unlabeled data is used to learn patterns and structures
in the original data. Common techniques include dimensionality reduction,
clustering, and anomaly detection. In the following, only dimensionality reduc-
tion techniques are considered since only this unsupervised ML technique is
used in the approaches presented in this thesis.

Dimensionality Reduction

Dimensionality reduction [320] (or dimension reduction) techniques are fre-
quently used to reduce multi- or high-dimensional data to a lower-dimensional
space while maintaining meaningful information. For generalization, we refer
to this concept throughout this thesis as projection. Page 4 in Section 1 contains
a brief explanation of why the use of this term is not always mathematically
correct. Dimensionality reduction is often used as a preparation step before
visualization when there are too many dimensions available to be visualized
reasonably. Then, reducing high-dimensional data to two (or three) dimensions
is beneficial for representing the data. An overview of this process is given
in Figure 2.4. Corresponding visualizations can help interpret the underlying
structure of the data, find patterns, and explore relationships between data
points. It can be used, for example, to analyze similarities or differences between
samples in a dataset. This thesis applies dimensionality reduction techniques in
the preprocessing phase before visualization to project the multidimensional
data to 2D (see Chapter 5). Then, each data instance is plotted as a dot. Besides
this use case, a lower-dimensional representation of some data can also be used
in various domains to save computational resources while working with only
the most important information of the data. It is, for example, often used to
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Figure 2.4 — Multidimensional input data consisting of m samples and n di-
mensions is used as input for a dimensionality reduction technique. After
performing the projection, the resulting 2D data can be used to create a visual-
ization on a 2D plane.

improve model performance as a data preparation step for supervised ML. It
may, e.g., help reduce the training time [323].

While dimensionality reduction is a powerful technique, various factors and
known problems should be considered when using this technique:

• By reducing the dimensionality, important information in the data may get
lost. Therefore, essential structures and patterns in the data may no longer
be available. After the projection, interpretability may be a challenge since
some properties of the original data are no longer visible.

• The curse of dimensionality [107] is a challenge when dealing with high-
dimensional data. With an increase in dimensions, the high-dimensional
space gets sparser, and data samples are more spread out. Therefore,
the distances between points get less meaningful. However, in the corre-
sponding low-dimensional space, the meaning of distances becomes more
important, leading to problems in accurately representing the structure of
the underlying data.

• There is the problem of missing and false neighbors in the neighborhood
of individual projected samples. Additionally, distances between samples
might be inaccurate. This may result in artifacts distorting the visual
representation and outliers that are not existing in the original data.

• Dimensionality reduction techniques differ in their linearity. Linear projec-
tion methods (such as PCA) use a linear data transformation. Therefore,
distances between all projected data samples can be compared globally.
This is often better suited during the interpretation of the projection.
However, nonlinear properties of the original data may be missed. Here,
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nonlinear dimensionality reduction methods (e.g., t-SNE) are better suited.
The advantage of these techniques is that they can capture nonlinear
relationships within the data. Such approaches try to maintain both local
and global structures of the underlying data. However, results are often
more challenging to interpret. The properties of the data (which are often
not known before analysis) determine which type of method fits better
for the analysis.

• Most dimensionality reduction methods use several hyperparameters that
must be selected or adjusted before projection. The chosen values can sig-
nificantly impact the quality of the approach. Many algorithms use a value
from a random state as initialization for the random number generator.
This number might have an effect on the outcome of the dimensionality
reduction process. But there are other parameters, such as the chosen
metric to calculate distances (e.g., the Euclidean distance is often used), or
the perplexity and neighborhood value (determines the number of neigh-
bors each data sample considers during the projection) for t-SNE and
uniform manifold approximation and projection (UMAP), respectively.
Such values have to be carefully chosen to generate meaningful results.

• Sometimes, applying a linear projection method (e.g., PCA) before using
a nonlinear one may be useful. Especially if the number of dimensions is
very high, the amount of data can be decreased by first reducing meaning-
less dimensions. This is a step recommended by Lee and Verleysen [203].
However, as mentioned before, this step might also lose important infor-
mation.

• In the case of independent collection of different dimensions of the data,
it may be helpful to scale the data before reducing it. A common method
used for this purpose is standardization (e.g., z-score normalization) before
applying the projection method. The result has a mean of zero and a
standard deviation of one. This means that a positive value is larger than
the mean, and a negative one is smaller. However, this technique assumes
that the data has a normal distribution. If values have a low standard
deviation, using this method could also negatively impact the quality of
the projection (e.g., noise that gets too much importance) [203].

All of the previously mentioned features influence the final projection, its use-
fulness, and its interpretation. Choosing an adequate dimensionality reduction
method is crucial, and each approach has advantages and disadvantages. For
example, linear or nonlinear methods fit better depending on the properties of
the input data.

There exist many methods to project data to a lower-dimensional space [320].
In the following, the focus is limited to the ones commonly used in the visual-
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ization community. In this thesis, we mention the linear projection method PCA
(which creates the same result as classical multidimensional scaling (MDS) [312]
on Euclidean distances), and metric MDS as well as the nonlinear projection
method t-SNE and UMAP. These methods are used in Chapter 5. In the
following, the basic principles of these approaches are described.

Principal Component Analysis PCA [160] is a commonly used technique for
dimensionality reduction in many fields. It is a linear projection method that
performs a linear transformation of the data to a new coordinate system. The
axes of this coordinate system, called the principal components, capture the
largest variance in the data. Hence, this approach tries to find the most impor-
tant features of a dataset to reduce the dimensionality. First, standardization is
performed on the original data. Next, the covariance matrix is calculated, and
eigenvalue decomposition is performed to find the eigenvectors and eigenvalues.
Finally, the principal components are selected by ranking the eigenvectors, and
the original data is projected on to these principal components. The principal
components are linear combinations of the original features and are orthogonal
to each other. Since this projection method is linear, it can be used to compare
distances between samples globally and show how similar various data points
are. In the resulting projection, samples that are closer together are likely to be
more similar in the original high-dimensional space. However, some informa-
tion may be lost in the process, especially variance along less important axes,
and distances in the reduced space may not always perfectly reflect the true
distances in the original space. Adjustable parameters of PCA implementations
(e.g., the one of the scikit-learn [250] library) are, for example, the number of
target dimensions (which is always two in our experiments since we want to
use the projections for 2D visualizations) and a random state value (seed for the
random number generator). Additionally, there are parameters for the solver
(may influence, e.g., accuracy, speed, and memory usage), whitening (can be
used to simplify the structure of the data), the number of iterations used during
a computation step, and others.

Multidimensional Scaling MDS [64, 187, 312] has the goal of maintaining
the pairwise similarities or dissimilarities between samples in a dataset when
representing them in a low-dimensional space. As input, a distance matrix
containing the distances between every pair of data samples is used. By mini-
mizing a loss/cost function (e.g., a stress function), the new positions of the data
samples are determined. The goal is that the distances in the lower-dimensional
space are as close as possible to the distances in the original data. There are
several types of MDS [64], including classical MDS, metric, and non-metric
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MDS. Classical MDS [312] tries to keep the exact distances between the sam-
ples in the low-dimensional space using Euclidean distances for the distance
matrix; it creates the same result as PCA [320] by using distance matrices as
input instead of the exact values of the data instances. Metric MDS [187] is a
superset of classical MDS representing a linear projection method that tries to
maintain the dissimilarities between samples in the form of distances (often
Euclidean distances are used, but other distance metrics can be used as well) by
minimizing a stress function. In contrast, non-metric MDS [187] is a nonlinear
approach that attempts to maintain the rank order of dissimilarities between
data instances instead of the exact distances. The MDS method used in this
thesis uses the Scaling by MAjorizing a COmplicated Function (SMACOF) [100]
implementation. This nonlinear optimization algorithm uses an iterative op-
timization technique to minimize the cost function and find the best possible
low-dimensional data representation. Each iteration step adjusts the distances
between samples in the low-dimensional representation to approximate the orig-
inal similarities or differences. Adjustable parameters of MDS implementations
(e.g., the one of the scikit-learn [250] library) are, again, the number of target
dimensions and a random state value. Additionally, there are parameters for the
distance calculation between data instances (we use Euclidean distance), scaling
(determines if metric or non-metric MDS should be used), and the number of
iterations to run the algorithm.

t-distributed Stochastic Neighbor Embedding t-SNE [319] is a nonlinear
dimensionality reduction technique mainly developed for visualizing high-
dimensional data. The goal is to preserve the local structures of the data while
also maintaining global structures. Therefore, it is beneficial for visualizing
clusters or groups of similar instances. However, this also means that the global
distances between samples cannot be used for comparison. For example, if
two clusters exist, t-SNE may place them far apart, even if they are close in
the original space. In this projection method, pairwise probabilities (repre-
senting similarities between points) between all data points in the high- and
low-dimensional space are first calculated. Then, the positions of the individual
points are adjusted by minimizing the Kullback-Leibler divergence between
these distributions in an iterative way. Adjustable parameters of t-SNE im-
plementations (e.g., the one of the scikit-learn [250] library) are, again, the
number of target dimensions and a random state value. Additionally, there
are parameters for perplexity (a value that determines the neighborhood size
of data samples considered during the projection), the number of iterations
used for the optimization, the distance metric (we use the Euclidean distance),
and the learning rate (influences how fast t-SNE modifies the locations of data
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samples related to the calculated gradients in each iteration). Such parameters
highly influence the visualizations and their interpretation; projection results
of t-SNE and the influence of parameter settings were explored by Wattenberg
et al. [334].

Uniform Manifold Approximation and Projection UMAP [225] is also a
nonlinear projection method, similar to t-SNE. It tries to maintain both local
and global structures. This method is based on topology, where a combination
of local and global neighborhoods are used to generate the lower-dimensional
representation. After generating a neighborhood graph based on pairwise
similarities in the high-dimensional space, repulsive and attractive forces are
iteratively used to maintain local and global structures. Similar data points
are pulled together, and dissimilar points are pushed away from each other.
An advantage of UMAP is that it scales well for large datasets. Adjustable
parameters of UMAP include the number of target dimensions, a random state
value, a distance metric, and a value for the neighborhood size. Additional
parameters are, for example, a value that defines how tightly points are packed
together (the minimum distance points are allowed to be apart). This parameter
can help if someone is interested in either clustering or a broader topological
structure.

These dimensionality reduction techniques were initially used by the visualiza-
tion community to map multidimensional data to 2D or 3D for visualization.
This was usually done by drawing data samples on static images or in interac-
tive 3D grids. Recently, dimensionality reduction methods were also more often
applied to sequential data (see Table 5.1 on page 171). Here, the visualizations
of the dimension reduced data can consist of a point cloud and additional lines
that connect subsequent points. While there are already interpretation problems
for static data, they appear more severe for sequential data, especially since
additional visual elements influence the interpretation of the data. More details
on this issue follow in Section 5.2.

2.5.2 Supervised Learning

Supervised learning uses labeled data to train a model. This means that the
training data consists of pairs of input data (e.g., an image or text sequence) and
output values (e.g., a category). Then, the model is trained with such exemplary
data. The goal of the model is to generate correct predictions for new data
samples: given new input data, an output value is predicted. Common algo-
rithms include support vector machines (SVMs) [93], regression [95], decision
trees [259], random forests [66], k-nearest neighbors, and NNs [31]. While there
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exist many different algorithms [241], this thesis only uses NNs. Goals that can
be solved with such approaches are usually classification and regression tasks.
Classification models predict, for an instance, one of several discrete categories
or classes. In contrast, regression models predict a numerical value rather than
a category.

In NNs, different aspects related to sequential components can be found. First,
the input data can be sequential (e.g., text input). Next, the training is a
temporal process. Finally, internal processes can be performed sequentially
(e.g., processing the text input), and the output may be a sequence. All of the
projects presented in this thesis use textual data as input that is processed in
sequential order. In these approaches, complex internal behaviors of ML have to
be considered, and essential information is presented to the users for analysis,
exploration, and debugging. Visualizing text sequences and the models’ internal
states must often be combined. In addition, internal information, possibly
without a sequential component, has to be extracted to be visualized for analysis
in combination with the sequential information.

This thesis uses only ML models in the context of NLP, namely, NMT, VQA,
and text classification tasks. Of particular interest are DL approaches, especially
RNN (long short-term memory (LSTM) [156]) and Transformer [322] models.
They are all specialized in processing sequential data and can be used as
sequence-to-sequence (Seq2Seq) [86] models. Another model used in this
thesis that is not specialized for sequential data is a graph neural network
(GNN) [341] and will also be briefly described in the following. A big challenge
of some supervised ML (especially DL) approaches is their interpretability.
ML approaches are frequently experienced as black boxes. They can provide
impressive but sometimes wrong results. Often, it is unclear to users how the
predictions were made. Therefore, one goal of this thesis is to provide visual
analysis solutions to better understand internal mechanisms and prediction
results of such approaches.

Natural Language Processing

NLP is closely related to AI. One type of approach involves processing natural
language (e.g., text and speech) with the help of ML techniques. Other AI-based
approaches, such as Symbolic AI, are also used in this domain but are not further
considered in this work. Common tasks in NLP include machine translation
of a text (e.g., NMT), question answering (e.g., in the context of VQA), text
classification, text summarization, text generation, and speech recognition. In
this thesis, approaches for NMT, VQA, and text classification are explored.
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Input

Text sequence in the source language:
The answer to the ultimate 
question of life, the universe, 

and everything is 42.

Translation
model

Output
Translation in the target language:

Die Antwort auf die ultimative
Frage des Lebens, des Universums

und allem ist 42.

Figure 2.5 — To translate a text sequence from a given language to another
language, a translation model automatically generates the translation in the
target language.

Often, in NLP, NNs (e.g., DL models) are used to process text. Therefore, a
large amount of annotated data that contains text sequences is used during
training. While NLP also uses further techniques, such as statistical or rule-
based approaches to enhance language understanding, this thesis only focuses
on the ML parts. Similar to other ML areas, the problems of understandability,
interpretability, and debugging are challenging since the models are considered
black boxes.

Neural Machine Translation As it becomes increasingly important to com-
municate in different languages, and since information should be available to
many people from different countries, many texts must be translated. Human
translation is a very time-consuming process. Computers can help speed up this
process. In the context of DL, NMT [297, 305] is a powerful option to realize
this. NMT automatically translates a sequence of words from one language into
a sequence of words in another language using NNs (see Figure 2.5). An input
sequence consists of source tokens from a source vocabulary and an output
sequence of target tokens from a target vocabulary. A huge amount of training
data is required consisting of input sentences and their translations to generate
a good prediction model and create appropriate translations.

Different approaches exist to achieve this goal [305, 344]. The DL model must
be able to process and memorize the content of long sequences. Usually,
Seq2Seq models are based on models designed to deal with such sequential
data. Therefore, LSTMs and the Transformer architecture are well-suited (see
below).

One of the first NN architectures for machine translation consists of two RNNs
with LSTM units [86]. There are extensions to this basic architecture to generate
better predictions. This includes, for example, an attention mechanism [46] that
is added to the LSTM architecture. Such an attention mechanism allows the
focus of the model on different parts of the input sequence. Also refer to page
46 for more details on the internal mechanisms of a Seq2Seq model.
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Figure 2.6 — A VQA system takes an image and a question as input and
predicts the answer.

With the introduction of DL methods, the translation quality of machine transla-
tion models has improved considerably in the last few years. However, there are
still difficulties that need to be addressed. Common problems of NMT models
are, for instance, over- and under-translation [314] when words are translated
repeatedly or not at all. Handling rare words [183], which might be available in
specific documents and long sentences, is also an issue. Domain adaption [183]
is another challenge. Especially documents from specific domains such as
medicine, law, or science require high-quality translations [90]. As many NMT
models are trained on general datasets, their translation performance is worse
for domain-specific texts. In the approach presented in Section 4.1, we address
these issues and present a visual analysis solution where it is possible to explore
translations and improve the NMT model.

Visual Question Answering VQA [41] combines concepts from both NLP
and CV. Given an image and a natural language question, a VQA system
automatically generates an answer for the question (see Figure 2.6). This means,
a user can ask an arbitrary textual question related to an image, and a model
provides an answer. Typically, VQA systems rely on DL approaches [342]: the
image and the question are separately processed to extract features that are
then used to generate the final prediction for the answer. Often, attention
mechanisms are used to focus on the most important areas of images and the
questions. VQA is usually treated as a classification problem, i.e., the model
predicts an answer from a predefined set of answers [169]. The answer with the
highest probability or confidence score is selected as the final prediction. For
training, a large amount of images, questions, and corresponding answers is
required. A novel approach to enhance the understanding of the visual content
is based on graph-based VQA [97]. Here, images are not directly fed into the
model. Instead, a scene graph [81] representation of each image is required.
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Figure 2.7 — Example
of a scene graph over-
laid on an image (left)
and without image
(right).

Scene graphs (see Figure 2.7) are directed graphs consisting of nodes and edges
that describe the content of images. The nodes represent the objects in an image
with their attributes, and the edges describe relationships among neighboring
objects. To process such scene graphs, GNNs (see page 48) can be leveraged,
which are special types of NNs specifically designed to process graphs. In
Section 4.2, we present an approach to analyze a graph-based VQA system [97].
In this approach, we employ a graph attention network (GAT) [70] (a specific
type of GNN), where each edge is assigned an attention value that can be used
in the analysis to better understand the prediction mechanism.

Text Classification Classification is the process of categorizing data into dif-
ferent predefined classes or categories. There are different ML approaches
available to achieve this (e.g., NNs, decision trees, SVMs). Depending on the
input data and expected performance, one of these methods might fit better
than the others. ClaVis [6] is a system that can help compare different classifiers
regarding performance and other properties. For text classification, the input is
a text sequence, and the output is a category (see Figure 2.8). A specific type
of text classification is sentiment analysis. Here, the sentiment or opinion of a
text is detected; the categories may include, e.g., the terms positive and negative
reflecting the opinion of someone writing a text sequence. Before entering
the text sequence into an ML model, it has to be transformed into a vector
representation that is used as input. In DL, common prediction approaches are
based on RNNs or convolutional neural networks (CNNs) to process the text
sequences and obtain an activation vector. The final prediction is then generated
with a classification layer, e.g., a fully connected layer, to map the activation
vector to the possible categories. As activation functions, sigmoid for binary
classification and softmax for multi-class classification can be used. The output
of this layer is a probability distribution over all classes. The final prediction
is the class with the highest probability. During training, text sequences and
the corresponding classes are fed into a model. In Section 5.1, we present a
visual analysis approach for text classification based on LSTMs. Here, users are
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The answer to the ultimate 
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and everything is 42.
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Figure 2.8 — For text classification, a text sequence is passed to a text classifica-
tion model, which outputs a class.

supported in analyzing the hidden states of an LSTM used to process the input
sequences.

Artificial Neural Networks

Artificial neural networks (ANNs) [31], or more commonly abbreviated as
NNs, are an important concept of ML. NNs are inspired by the structure and
functionality of biological NNs available in the human brain. They consist of
nodes (called artificial neurons) connected by edges. Each neuron and edge
has learnable parameters: each node has the bias parameter, and each edge
has a weight. The nodes are usually aggregated into multiple layers, and each
node has inputs and outputs. The information flows through such a network
from the input layer (i.e., the input neurons) to the output layer (i.e., the output
neurons). See Figure 2.9 for an example. The layers between the input and
output layers are called hidden layers. Input values are passed to neurons
that apply an activation function to generate an output and pass the result to
neurons of the next layer. An example for a hidden layer is a fully connected
layer (also known as linear layer or dense layer). Here, each neuron of the layer
is connected to every neuron of the previous layer. An activation function uses
the weighted sum of inputs of the neurons plus the bias of the actual neuron to
calculate the output (also called activation vector). Commonly used activation
functions include sigmoid, softmax, rectified linear unit (ReLU), and tanh. The
choice for the activation function depends on the problem the network needs
to solve. Sigmoid and softmax are usually used in the output layer: sigmoid
is commonly used for binary classification tasks, and softmax for multi-class
classification since it provides a probability distribution over different classes.
ReLU and tanh are more commonly used in hidden layers. Here, ReLU is often
found in CNNs, while tanh is applied in RNNs and LSTMs.

The parameters of a network (weights and biases) are learned during the
training process of an NN, where training data (consisting of input and output
values) is fed into the network. These parameters are adjusted using a loss
function and an optimization algorithm to minimize the error between predicted
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Figure 2.9 — Example of a simple
NN (FNN) consisting of an input
layer, an output layer, and a hid-
den layer. Each circle represents one
neuron, and each arrow depicts a
connection between two neurons.

and expected outputs. This means they are adapted in such a way that when
feeding samples of the training data into the network, the correct prediction
should be performed. A loss function (e.g., mean square error for regression
or cross entropy for classification tasks) compares the difference between the
prediction and the correct value. Backpropagation is a commonly used method
to minimize error value by propagating the error backward through the network
to compute gradients of the loss function concerning each parameter. Then,
an optimization algorithm, such as gradient descent, is used to update the
parameters of the network to minimize the results of the loss function such
that the network learns to perform better predictions. To avoid overfitting, a
previously specified percentage of random neurons in each layer can be ignored
during training (dropout). Typically, the training involves an iterative process
consisting of multiple passes or epochs. In each epoch, the entire training
dataset is processed. This is often done using multiple iterations, where a
number of training samples (specified through a batch size) are used to update
the model. Multiple iterations are needed to process all training data within
one epoch. With the help of batches, the model weights are updated after
each iteration, not after each training sample or after processing the whole
dataset. Usually, a huge amount of training data is required to generate good
models.

There are many different architectures for NNs. An example are feedforward
neural networks (FNNs) (see below). Deep neural networks (DNNs) are NNs
containing multiple hidden layers. These layers are located between the input
layer and the output layer. It is not well-defined how many such layers are
required to count an NN as DNN. DNNs are an architecture belonging to the
concept of DL. Typical examples of DNNs are RNNs (e.g., LSTMs), CNNs,
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Figure 2.10 — Example
of an RNN. It is visi-
ble that the current hid-
den state is computed
from the previous hid-
den state and the cur-
rent input.

GATs, and Transformers. Other architectures exist, and many combinations
and extensions thereof. In the following, the ones of importance to this thesis
are presented.

Feedforward Neural Network An FNN is a simple form of NN. The informa-
tion is passed to an input layer and may flow over hidden layers to an output
layer (see Figure 2.9). The main characteristic of this concept is that information
flows only in one direction. There are no cycles that may, for example, occur in
RNNs.

A multilayer perceptron (MLP) is one type of FNN. It is a fully connected NN
where each neuron of a layer is connected to each neuron of the next layer.
CNNs are another type of FNN, often used in CV, where the input is a matrix.
They contain one or more convolutional layers followed by other layers, such
as pooling or fully connected ones. The convolutional layers use convolution
operations on the input data with convolution kernels to extract features; the
results are feature maps (or activation maps), which are passed to the next layer.
The pooling layer is used to downsample the map by removing unimportant
information.

While FNNs are very common, in the context of this thesis, we do not investigate
them directly. They are not well suited for processing sequential data. However,
they are used within larger NN architectures (e.g., the Transformer).

Recurrent Neural Network RNNs are NNs developed to process sequential
data. They are an often used technique in NLP where text sequences are
processed. This is enabled through the internal memory of the model at a time
step in the form of a vector (a hidden state); it contains information about the
already processed sequence. The architecture of an RNN consists of connected
units that use an input and the previous hidden state to produce an output
and a new hidden state (see Figure 2.10). The dimensionality of a hidden
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Figure 2.11 — Example to illustrate a basic Seq2Seq model according to Cho
et al. [86] consisting of an encoder and a decoder to translate an input sequence
into another language. The encoder reads each term of the input sequence. At
each step, the previous hidden state and the next term of the sequence are used
to determine the next hidden state. The decoder starts using the last hidden
state of the encoder together with the start-of-sequence (SOS) token to generate
the first term of the output sequence. It continues generating tokens using the
token and hidden state determined previously until the end-of-sequence (EOS)
token is reached.

state is defined by the number of units or neurons in the hidden layer of
an RNN; they can be individually defined. Input can be, for example, the
individual words of a text sequence. The problem of RNNs is that long-term
dependencies cannot be well captured due to the vanishing gradient problem.
This problem occurs during the training of an NN when the gradients get very
small during backpropagation through multiple layers. Therefore, there are
multiple improvements for RNNs.

LSTMs [156] are an extension of traditional RNNs that can handle long se-
quences. They use a gating mechanism to handle which information should
be retained or forgotten. There are three gates: the input gate, the forget gate,
and the output gate, used to forward and forget information. Often, LSTMs
are combined with an attention mechanism [46] to improve their performance.
LSTMs are used in Section 4.1 in the context of NMT and Section 5.1 for text
classification.

In the context of NMT, a basic Seq2Seq model [86] consists of two RNNs (e.g.,
with LSTM units): an encoder and a decoder (see Figure 2.11). While the
encoder transforms the source sequence into a fixed-length representation (a
context vector), the decoder generates a target sequence based on this vector.
The length of the input and output sequence do not have to be the same. An
extension of such a basic model uses an attention mechanism [46], which allows
the model to focus on different parts of the input sequence during the prediction
of the next element of the target sequence by providing the decoder access to
the hidden states of the encoder. An attention mechanism enables different
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Figure 2.12 — Example to illustrate one step of a Seq2Seq model consisting of
a bidirectional encoder and decoder architecture, and which uses an attention
mechanism to translate an input sequence into another language. The encoder
generates hidden states for each token (by concatenating the forward hidden
state (produced by a forward RNN reading the sequence from left to right) and
backward hidden state (produced by a backward RNN reading the sequence
from right to left)). The encoder hidden states and the current decoder hidden
state (for the term “the”) are used to determine the context vector, which is used
to predict the next word (“day”). Illustration modified from See et al. [282].

parts of the input sequence to be assigned different weights according to their
importance. Then, a weighted sum of the hidden states can be computed
such that the model focuses more on relevant information. Figure 2.12 shows
an example for one step during the prediction. Here, attention weights are
determined from the current decoder and encoder hidden states. Then, a
context vector for the current step is determined as a weighted sum of the
encoder’s hidden states using the attention weights. This context vector and
the current decoder state are used to generate the output. The final prediction
is obtained as a probability distribution over the target vocabulary, based on
the context vector and current decoder state. Attention weights represent a soft
alignment between source and target sequences. The weight distribution over
the source sequence shows how the source words contributed to the prediction
for each translated word.

Transformer The Transformer architecture [322] is a very popular ML tech-
nique based on NNs. Results created with this technique are usually impressive.
It is used in many different domains and has led to the development of several
further methods (e.g., Bidirectional Encoder Representations from Transform-
ers (BERT) [104], Generative Pre-trained Transformer (GPT) [261]). Similar to
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LSTMs, the Transformer was developed to process long sequences. Here, the
attention mechanism plays a very important role. Compared to the previously
mentioned attention mechanism of LSTMs, the Transformer uses a self-attention
mechanism which is used extensively throughout the model to efficiently cap-
ture long-range dependencies in sequential data. The Transformer is especially
well suited for machine translation and other areas where Seq2Seq operations
have to be performed. Key elements of such an architecture are an encoder
and a decoder. The encoder transforms the input sequence into a context
vector, and the decoder creates an output based on this context vector. Both
the encoder and decoder consist of multiple layers. The layers of the encoder
consist of a self-attention layer (determines attention scores for each element of
the input) and a fully connected FNN. The layers of the decoder consist of a
self-attention layer (determines attention scores for already generated elements
in the output), a fully connected FNN, and an encoder-decoder attention layer
(allows a focus on important parts of the input sequence encoded by the en-
coder). Multi-head attention allows the model to focus on the input sequence
simultaneously multiple times for the computation of attention scores; the
results are combined and transformed into a final output. It is used for both
self-attention and encoder-decoder attention. The Transformer architecture is
used in Section 4.1.

Graph Neural Network A GNN [341] is a type of NN designed for graph
data. As input, a directed graph is used, consisting of a set of nodes and
a set of edges connecting the nodes. The nodes represent objects, and the
edges are the relations between them. In this thesis, we use GATs [70], a
specific type of GNNs. A key feature of this architecture is the use of attention
mechanisms to capture important relationships within a graph. In this work,
graph classification is performed by the model.

The key concept of GNNs is message passing, where information between
neighboring nodes is exchanged to update their node representations (i.e.,
feature vectors or node embeddings) based on learned edge attention weights.
Here, multiple layers are used to perform graph convolutions; in each layer, the
node representation of each node is updated. After multiple convolutions, the
node embeddings can be used to make the final prediction. Compared to other
GNN architectures, a characteristic of GATs is their ability to weigh incoming
edges differently. Information is passed along graph edges multiple times,
namely in each GNN layer. In each layer, it is possible to record the weight
shares of all edges. These values allow users to get an impression of which
edges contributed how strongly to the updated value of any given node in every
step. Additionally, a graph gating mechanism is used by GNNs to aggregate the
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node embeddings into a single vector representation for the prediction. Here,
the global node attention values (graph gate weights) are computed between a
global language representation and the node embeddings. Nodes with higher
attention values contribute more to the final result, while nodes with lower
values have less influence. We use these information in our approach presented
in Section 4.2.

2.5.3 Visual Analysis of Machine Learning

ML techniques can create impressive prediction results, but results are still
sometimes incorrect. Visualization and especially visual analysis are helpful
approaches to increase the transparency and interpretability of ML models,
facilitate debugging of predictions, and even improve model quality through
user input. This concept is often referred to as the current research topic
visualization for machine learning (Vis4ML) [330], a subset of XAI [50]; it can
visually help understand why certain predictions were made. While XAI helps
to better understand and improve the transparency of AI model outputs through
various techniques, Vis4ML uses visualizations to gain insights into prediction
results and the inner workings of a model. By helping users of ML models
better understand and interpret model decisions and their relationship to the
input data, trust in these models can be increased. Figure 2.13 illustrates the
connectivity between the prediction mechanism of a trained ML model and
visualizations that can be created from the input, output, and the internal states
of the ML model with examples presented in this thesis.

Different strategies can be chosen to analyze ML models [130]. One approach
is to explore a model’s internal states while performing a prediction. This helps
see how these states change and contribute to the final prediction. Another
method is to explore the actual prediction results that can provide insight into
the prediction and provide a quality assessment of the performance of the model.
Other approaches, such as exploring the training process (e.g., Nguyen [234]),
are also possible but are not further considered in this thesis. The strategies can
be applied to a variety of data types. In the context of this thesis, we focus on
analyzing DL approaches and chose examples from NLP.

ML models are often seen as black boxes and are hard to understand and
interpret. Their internals might be complex, consisting of many calculation steps,
and may not be easily interpretable by humans. Therefore, one of the main goals
in this area is to open the black box of ML, making ML models more transparent
and controllable. The visualization and interpretation of internal states of NNs
is currently a popular research area. Visual analysis methods were developed
and evaluated to achieve this, allowing users to better understand, improve,
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Figure 2.13 — Input, output, and internal states of a machine learning model
can be used to create visualizations in the context of Vis4ML; the visualizations
were created with the approaches presented in this thesis.

and control ML models, especially DL models. There are many survey papers
showing the current interest in this area (e.g., Alicioglu and Sun [36], Beauxis-
Aussalet et al. [53], Choo and Liu [89], Garcia et al. [130], Hohman et al. [157],
La Rosa et al. [197], Liu et al. [209], Yuan et al. [351]). Most of these publications
present an overview of existing work and a new taxonomy to classify existing
work or report on present or future research directions. Beyond these works,
numerous individual solutions exist for different problems to deal with ML
aspects such as transparency, interpretability, and trust. Approaches developed
in this context aim to show the features learned and to make the learning and
decision process more transparent and controllable. This is achieved by giving
humans who have the goal to understand the model decisions and improve the
final performance access to internal information of ML models.

In this thesis, the idea of using ML approaches (e.g., unsupervised ML) to create
visualizations to better understand other ML approaches (e.g., supervised ML)
is also pursued. This means that ML is applied to generate visualization of
ML aspects. By extending the concept of Vis4ML to include the additional use
of ML for creating visualizations, we introduce the term machine learning for
visualization for machine learning (ML4Vis4ML). Such an approach is used
in Section 5.1. Here, a supervised ML technique (text classification based on
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LSTMs) was used, and visualizations from internal states of the classification
were created by performing unsupervised ML (dimensionality reduction) for
exploration and debugging purposes. It would even be possible to extend
this approach by applying supervised ML on results from supervised ML to
create visualizations. This might bring unexpected insights into various ML
models.

Chapter 4 and Section 5.1 present different visual analysis solutions for the
exploration of internal states and the final prediction results of NMT, VQA, and
text classification. The work by Chatzimparmpas et al. [84] presents a state-of-
the-art report on interactive visualization approaches that enhance trust in ML.
The DL-based approaches concerning NMT and text classification presented in
this thesis [5, 15, 19] (Sections 4.1 and 5.1) are also listed in the online version1

of their survey. Additionally, the approaches presented in this paper include
temporal visualizations. The work about time series projections generated with
dimensionality reduction [22] (see Section 5.2) is listed in the online version of
the TimeViz Browser 2.02 [310].)

2.6 Determining Requirements

Throughout this thesis, we outline specific requirements for each visual anal-
ysis approach, serving as the foundation for our implementations. These
requirements were usually based on multiple sources. First, they were built
from challenges identified within the specific research areas and analysis goals.
Then, characteristics were analyzed to formulate requirements for addressing
them during the development and evaluation of the visual analysis approaches.
Second, we also based the requirements on the concept of design as domain
experts [127] with long-term, in-depth experience: We designed our visual-
ization techniques in the context of large-scale and long-term collaborative
projects (SimTech3 and SFB-TRR 1614). These projects deal with many topics
also explored in this thesis: techniques and applications for eye tracking, XAI,
including supervised ML (e.g., NMT and VQA) and unsupervised ML (e.g.,
dimensionality reduction). For most analysis systems presented in this thesis,
a collaboration with experts in areas such as eye tracking (Section 3.1 and
Section 3.2), DL and NMT (Section 4.1 and Section 4.2) was conducted. The

1 TrustMLVis Browser, https://trustmlvis.lnu.se/
2 The TimeViz Browser 2.0, https://browser.timeviz.net/
3 Cluster of Excellence “Data-Integrated Simulation Science (SimTech)”, www.simtech.

uni-stuttgart.de
4 DFG Transregional Collaborative Research Center SFB-TRR 161 “Quantitative Methods for

Visual Computing”, www.sfbtrr161.de

https://trustmlvis.lnu.se/
https://browser.timeviz.net/
www.simtech.uni-stuttgart.de
www.simtech.uni-stuttgart.de
www.sfbtrr161.de
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development of these systems involved an iterative process with multiple meet-
ings with these domain experts to collect feedback and improve the analysis
systems.

2.7 Evaluation Methods

In this thesis, different types of evaluations are performed to assess the use-
fulness of the presented visual analysis systems. Empirical studies are a key
method for new visualization approaches or visual analysis systems to be eval-
uated [51, 77, 167, 198]. It is possible to show the usefulness through expert
studies, e.g., using a think-aloud protocol analysis [117] or other types of us-
ability studies [124]. Instead, automated computer-based analysis using some
metrics for evaluation or a demonstration of use cases can be employed to
evaluate an approach. Often, it is useful to use a combination of different evalu-
ation methods [77] to help better understand the efficiency of a visualization
approach from various angles. The different types of evaluation methods can
be categorized as qualitative and quantitative evaluation [77].

Qualitative Evaluation

In a qualitative evaluation, non-numerical data is collected to gain insights into
subjective experiences, perceptions, and behaviors. Such data can be collected
as observations, in interviews, or in questionnaires.

One approach are user studies [124]. This method is based on observing, for
example, visualization or domain experts using a system and collecting their
feedback. Here, a common technique is a think-aloud protocol analysis [117],
where experts or other users can use and explore the system. Users verbally
express their thoughts while engaging with the system. They report what they
do, if they have problems, or what they like. Additionally, feedback, comments,
and suggestions can be collected through an interview or a feedback form after
using the system. We used this technique, for example, in Section 3.1.

In questionnaires and expert interviews, users can answer specific questions
to evaluate their answers later. The standardized questionnaire on usability,
System Usability Scale (SUS) [71], is an often applied and adopted method.
It consists of 10 questions about the usability of software. The user feedback
is collected on a Likert scale [207] from 1 (strongly disagree) to 5 (strongly
agree). Different systems can be compared with this questionnaire. Addition-
ally, software or approach-specific questions can be used or added to other
questionnaires to collect more specific responses concerning the features and
functionalities of the software being evaluated. While this type of evaluation can
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create quantitative results, the interpretation may usually rely on the subjective
opinions of participants, and therefore, results might be analyzed qualitatively.
In such questionnaires, some questions may ask for objective data (such as age),
providing quantitative information. Besides numerical answer options, users
can also answer verbally in free text forms of a questionnaire or in interviews
to collect general feedback about an approach.

Case studies [167] and a demonstration of use cases can also be employed to
show the capabilities of a system. A case study offers an in-depth analysis
of how an approach is used to address a real-world problem, often involving
a collaboration with domain experts. It provides detailed insights into the
approach, frequently involving an iterative process to improve the application.
In the literature, case studies may also report on how researchers apply an
approach [167]. However, in these cases, according to Isenberg et al. [167], a
more appropriate term to describe this might be usage scenarios. In this thesis,
we show in several sections examples of the capabilities of our systems and how
they can be used to achieve some goals; we refer to these types of evaluations
as demonstrations of use cases or examples (e.g., in Section 5.2.4).

Quantitative Evaluation

In a quantitative evaluation, measurable numerical data is collected. A statistical
analysis can then be used to draw conclusions and make decisions based on
the quantitative measures.

For example, quantitative data can be collected by measuring metrics of par-
ticipants in regard to their performance when completing a task [198]; this
includes response times or error rates when using a system. An overview of
how well participants could work with different parts of a software system (e.g.,
when completing different tasks) and differences between participants can be
shown through analysis of such performance values. We use this technique in
Section 4.2.

Another method in quantitative evaluation is automated computer-based anal-
ysis to evaluate the performance of an approach according to some metrics.
User behavior can be imitated or simulated to test if some software has the
expected result under different conditions. Here, a large amount of data can be
generated and processed to gain insights into the performance and reliability of
an approach. We do this for example in Section 4.1.4. Instead, it is also possible
to automatically evaluate the relevance of the information presented in the
visualizations. On page 140 in Section 4.2.3, an example of such an evaluation
is shown.
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There are further methods of quantitative evaluation that were not used in this
thesis. An example is the use of eye tracking to record and analyze the gaze
behavior of participants [193], e.g., when using a visual analysis system. Here,
the goal is to evaluate whether the visualizations are appropriate and effective
for certain tasks, and to analyze the strategies users employ when working with
the system.
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Temporal data, which is a specific type of sequential data, can be found almost
anywhere. This makes its analysis and evaluation very important. The visual
analysis of such data through interactive visualizations helps explore and
understand patterns, trends, and relationships that may occur over time. Typical
time series data exists, for example, in climate data, healthcare, and finance.
Time series are characterized by a timestamp being associated with each data
point. In the here presented analysis approaches, there lies a focus on eye
tracking data. A temporal component characterizes the order of the sequence,
and spatial ones indicate where a person is looking. Eye tracking data can be
given as raw gaze positions or aggregated to eye movements. For more details
on eye tracking and the different eye movements, see Section 2.4.

Time is continuous, nevertheless, often only discrete points or intervals are
available or chosen to create visualizations for the analysis. In eye tracking,
the sampling rate of the recording while acquiring raw data or the filtered eye
movements (such as fixations and saccades) define such discrete data. In the
analysis, it is possible to gain most insights through interactive visualization
tools with multiple views that combine different visualization techniques for
exploring various aspects of the data. Here, it is often possible to examine not
only temporal trends but also summarized and aggregated information across
time periods.
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This chapter presents two visual analysis systems for eye tracking data. The first
one (Section 3.1) focuses on parameter choices while filtering eye movements,
and the second one (Section 3.2) on joining and comparing data from multiple
sources.

3.1 Visual Exploration of Microsaccades

The first work presented in this thesis, a visual analytics system for microsac-
cades (Visual Microsaccades Explorer (VisME)) [10], has the goal to promote
reproducibility in the data analysis of microsaccades in high-frequency eye
tracking data. The visual analytics system allows users to create visualiza-
tions for microsaccade distributions and provides the possibility to interactively
adjust filter settings.

This section is based on the following publication:

T. Munz, L. L. Chuang, S. Pannasch, and D. Weiskopf. VisME: Visual microsaccades
explorer. Journal of Eye Movement Research, 12(6), 2019, doi: 10.16910/jemr.12.6.5 [10].

The images shown in this section were created with the following source code/material:

T. Munz. VisME software v1.2. Zenodo, 2019, doi: 10.5281/zenodo.3352236 [8]. (The
source code is also available on GitHub: https://github.com/MunzT/VisME.)

This section presents an interactive visual analytics system (Figure 3.1) for eye
tracking data, focusing on microsaccade exploration. It takes temporal raw data
from eye tracking (timestamps along with gaze positions) as input. We provide
different visualization and interaction techniques to visualize conventional
properties of microsaccade behavior (i.e., amplitude, direction, peak velocity,
duration, and temporal and spatial distribution). In an analytical process, a
combination of these techniques can be used for the exploration of eye tracking
datasets. To allow the detection of microsaccades, we adopted the microsaccade
detection algorithm by Engbert and Kliegl [111] as a starting point and included
additional features to allow for interactive parameter control. Using our system,
researchers are encouraged to continuously vary these parameter values to
graphically compare their impact on the dataset.

This approach deals with RQ1 and RQ2. First, it is possible to use visual analysis
for sequential data. Users can use different parameter settings to process their
sequential data and create visualizations to gain insights. Second, the selected
parameter settings influence what is presented to the user in the visualizations
and, hence, what can be discovered during the visual analysis. If the parameters

https://doi.org/10.16910/jemr.12.6.5
https://doi.org/10.5281/zenodo.3352236
https://github.com/MunzT/VisME
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Figure 3.1 — Screenshot of the user interface showing visualizations of high-
frequency eye tracking data in three linked views: (A) gaze positions with
highlighted fixation and microsaccade samples on top of the stimulus, (B)
temporal dependency of the eye movements and microsaccades, (C) rose plot
of microsaccade directions.

are poorly selected, users may draw wrong conclusions about the microsaccades
and their properties from the created visualizations.

This approach contributes by simplifying the exploration of microsaccadic
datasets through interactive visual analytics. First, our system can be used to
better understand how changes in the parameter values of microsaccade filters
can influence the spatial and temporal distributions of microsaccades. Next, it
is convenient for general visual exploration of microsaccades using interaction
techniques like filtering to analyze microsaccades on different levels. In line with
the increasing availability of eye movement datasets, our visual analytics system
will help researchers and their reviewers critically discuss and (re-)analyze
data. The source code of our implementation, a detailed description of the
input and output formats, and a Python script for data preparation are publicly
available [8]. Additionally, there is a more detailed manual for the system
available so that the system can be readily used and the data file converter for
input data can be easily adapted for other raw data.

3.1.1 Related Work

Recent years have witnessed an increase in the adoption of advanced visual-
ization techniques by eye tracking researchers (see Blascheck et al. [60], for a
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survey). However, no visualization techniques have been designed specifically
for the analysis of microsaccades. Conventional visualization techniques tend to
focus on low-frequency data (i.e., dwells, fixations, and saccades); for instance,
scanpaths that visualize sequences of fixations and saccades or attention maps.
More details about these visualization techniques can be found in Section 2.4.4.
Visualizations can communicate derived statistics, which are often more in-
formative than simply plotting the raw data, such as summary statistics of
microsaccade direction and amplitude. Polar plots and rose plots are common
methods to indicate the distribution of eye movement directions (e.g., Engbert
and Kliegl [111], Gao and Sabel [128], Laubrock et al. [200], Lowet et al. [211], Pi-
ras et al. [253], Sinn and Engbert [291]). Scatterplots are useful in depicting the
main sequence relationship between peak velocities and microsaccade ampli-
tudes (e.g., Engbert and Kliegl [111]), and histograms illustrate the dataset’s
distribution of microsaccade peak velocities, magnitudes, or durations (e.g.,
Otero-Millan et al. [242]). Otero-Millan et al. [242] and McCamy et al. [223],
for example, use figures where raw data samples are plotted on top of the
stimulus, highlighting microsaccades. In order to show the temporal positions
of microsaccades in relation to the eye movement, timelines are employed by
McCamy et al. [224] and Otero-Millan et al. [244].

Eye tracking data are oftentimes large datasets of time series prior to feature
extraction. With visualization alone, it might be difficult to handle all of the
data and to fully understand it. Visual analytics [182, 308] can be an invaluable
tool in allowing researchers to understand and compare complex datasets [74];
it can be a useful choice in the development of an eye tracking exploration
system since different techniques can be used by people to gain insights. See
Section 2.1 for some examples. For eye tracking data in general, different visual
analytics methods have been investigated by Andrienko et al. [40]. Kurzhals
and Weiskopf [192] introduce a visual analytics method for dynamic stimuli.
To the best of our knowledge, no visual analytics system has been developed
for the visual exploration of microsaccade behavior that takes eye tracking data
as input and allows for the real time adaptation of filter algorithms.

Studies on microsaccadic behavior are often highly controlled psychophysical
experiments (e.g., Engbert and Kliegl [111], Hafed and Clark [141], Laubrock
et al. [200]), as opposed to studies that involve natural viewing tasks (c.f., Greene
et al. [138], Yarbus [347]). As far as we know, no specific visualization software
system exists to support the exploration of microsaccade distributions of eye
movement datasets for the natural viewing of complex scenes. Our approach
allows the analysis of both types of experiments. Generally, VisME is agnostic
to experiment design and stimulus. This means that it can also support the
comparison of datasets across different studies.
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3.1.2 Requirements and Design

In this section, we provide details on the definition of microsaccades in the eye
tracking domain and the requirements for the system we implemented.

We used a formative process for the development of our design, following
the nested model by Munzner [231]. We focused on the outer parts of the
model: domain problem characterization, data/operation abstraction design,
and especially the encoding/interaction design. The process was performed in
close cooperation with an eye tracking expert. In multiple sessions over a period
of 16 months, our system was repeatedly refined. More details on specifying
our requirements can be found in Section 2.6.

Background to Microsaccade Detection

For the automatic detection and labeling of microsaccades, different algorithms
have been proposed (e.g., Bellet et al. [54], Mihali et al. [227], Otero-Millan
et al. [242]), most notably by Engbert and Kliegl [111]. Nonetheless, the param-
eters for detecting and identifying microsaccades can vary immensely across
different research studies. Furthermore, some studies (see Table 3.1 for ex-
amples) might modify basic algorithms with the introduction of additional
conditional parameters (e.g., min/max amplitude, inter-saccadic interval). This
lack of consistency is often tolerated in order to accommodate unavoidable
variances in eye tracking data, individual behavior, and experiment designs.
However, this also poses a barrier for researchers in determining whether re-
ports of microsaccadic behavior are consistent from one study to another and
the extent to which they are shaped by the chosen parameter values themselves.
To facilitate the reproducibility of research results, we sought to provide a sys-
tem that would support eye movement researchers in exploring and reviewing
the properties of microsaccades in a given dataset as well as comparing it with
another. Such a system would also serve to instruct inexperienced researchers
in understanding the consequences of microsaccadic filtering.

As already described in Section 1.1, the choice of parameter values are crucial
for the analysis. This also applies for the parameter settings of filter algorithms
to detect eye movements [39, 61, 179]. Poletti and Rucci [254] addressed the
challenges of defining microsaccades. Table 3.1 shows how the chosen parameter
values and algorithmic features have differed across recent studies (i.e., 2009–
2018) on microsaccades (a similar table for the period of 2004–2009 is provided
by Martinez-Conde et al. [218]). In particular, Table 3.1 summarizes how the
critical parameter values of the algorithm by Engbert and Kliegl [111] (e.g., λ,
which is used to calculate velocity thresholds) vary across published studies. It is
noteworthy that even the original values chosen by Engbert and Kliegl [111] and
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Table 3.1 — Comparison of microsaccade filters used in different research
projects in 2009–2018. Engbert and Kliegl [111] and Engbert and Mergen-
thaler [113] are added for reference, and the last row shows a summary of
parameter choices.

Paper Method Inter-
saccadic
Interval

Ampli-
tude

Duration λ Bin-
ocular

Data Other Features

Engbert and
Kliegl [111]

New method – – ≥ 12 ms 6 yes Eyelink System
(SMI), 250 Hz

–

Engbert and
Mergen-
thaler [113]

Engbert and Kliegl [111] – ≤ 1◦ ≥ 6 ms 5 yes Eyelink II, SR
Research, 500 Hz

–

Dimigen
et al. [106]

Engbert and
Mergenthaler [113]

50 ms < 1◦ ≥ 6 ms /
3 samples

5 no IView-X Hi-Speed
1250, SMI GmbH,
500 Hz

–

Hsieh and
Tse [161]

Engbert and Kliegl [111] 80 ms 0.15◦ −
2◦

≥ 4
samples

10 – Eyelink2, 250 Hz (Semi-)blinks and 400 ms be-
fore/600 ms after them removed

Pastukhov and
Braun [247]

Engbert and
Kliegl [111], Engbert
and Kliegl [112]

– – – – yes Eyelink 2000, SR
Research, 1000 Hz

Modified algorithm to accommo-
date for a higher sampling rate

Mergenthaler
and
Engbert [226]

Engbert and
Kliegl [111], Engbert
and Mergenthaler [113]

30 ms – ≥ 6 ms 3 (free
viewing);
4
(fixation
task)

yes Eyelink II, SR
Research, 500 Hz

–

Bonneh
et al. [63]

Engbert and Kliegl [111] – 0.08◦ −
2◦

≥ 9 ms – no iViewX Hi-Speed,
SMI, 240 Hz and
Eyelink II, SR
Research, 1000 Hz

Raw data smoothed with a win-
dow of 15 ms; velocity range:
8◦ − 150◦/s

Benedetto
et al. [55]

Salvucci and
Goldberg [276]

– < 1◦ – – no SMI X-HEAD,
200 Hz

–

Otero-Millan
et al. [243]

Engbert and
Mergenthaler [113]

20 ms < 2◦ – 6 yes Eyelink 1000, SR
Research, 500 Hz

–

Yokoyama
et al. [349]

Engbert and Kliegl [111] – – ≥ 3
samples

6 yes Eyelink CL 1000, SR
Research, 500 Hz

No trials with eye blinks or eye
position more than 2◦ away from
center

Hicheur
et al. [154]

Engbert and
Mergenthaler [113]

25 ms < 1◦ ≥ 10 ms 4 yes Eyelink 1000, SR
Research, 1000 Hz

Microsaccades within 50 ms after
a saccade were not considered as
microsaccades

Pastukhov
et al. [248]

Engbert and Kliegl [111] – < 60′ – – yes Eyelink 2000, SR
Research, 1000 Hz

Square-wave jerks

Di Stasi
et al. [105]

Engbert and Kliegl [111] 20 ms < 1◦ ≥ 6 ms 6 yes Eyelink 1000, SR
Research, 500 Hz

(Semi-)blinks and 200 ms be-
fore/after them removed

McCamy
et al. [222]

Engbert and Kliegl [111] 20 ms < 2◦ ≥ 6 ms 4 yes Eyelink 1000, SR
Research, 500 Hz

(Semi-)blinks and 200 ms be-
fore/after them removed

Costela
et al. [94]

Engbert and Kliegl [111] 20 ms < 1◦ ≥ 6 ms 4 yes Eyelink 1000, SR
Research

(Semi-)blinks and 200 ms be-
fore/after them removed

McCamy
et al. [221]

Engbert and Kliegl [111] 20 ms ≤ 2◦ ≥ 6 ms 6 yes Eyelink II, SR
Research, 500 Hz

(Semi-)blinks and 200 ms be-
fore/after them removed

McCamy
et al. [223]

Engbert and
Kliegl [111], Engbert
and Mergenthaler [113]

20 ms < 1◦ ≥ 6 ms 6 yes Eyelink II, SR
Research, 500 Hz

(Semi-)blinks and 200 ms be-
fore/after them removed

Privitera
et al. [258]

Engbert and Kliegl [111] – < 1.2◦ – 6 and 3 no Eyelink 1000, SR
Research, 1000 Hz

First peak velocities were deter-
mined then their extend

Yuval-
Greenberg
et al. [355]

Engbert and
Mergenthaler [113]

– < 1◦ – 6 – Eyelink 1000, SR
Research,
1000/500 Hz

–

Fried
et al. [126]

Bonneh et al. [63] yes > 0.1◦

∧ ≤ 2◦
≥ 6 ms – – Eyelink 1000, SR

Research, 500 Hz
(Semi-)blinks and 20 ms be-
fore/after them removed; min
velocity: 10◦/s; peak velocity:
> 18◦/s

Poletti and
Rucci [254]

– 15 ms 3′ − 30′ – – yes – –

Krejtz
et al. [185]

Engbert and Kliegl [111] – – ≥ 6 ms 6 no EyeLink 1000, SR
Research, 500 Hz

Microsaccades detected within
fixations; average position of
right and left gaze positions are
used

Summary – 0 −
80 ms

> 0◦ −
0.15◦; <
1◦ − 2◦

6 − 16 ms 3 − 10 yes/
no

200 − 1000 Hz min/max velocity: 8◦/s− 18◦/s,
150◦/s; vel. window: 5 − 15 ms;
ignore time after saccade: 0 −
50 ms; (semi-)blinks and 200 ms
before/after them removed; . . .
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Engbert and Mergenthaler [113] differed in order to accommodate for irrelevant
variances across their different datasets. For example, Malinov et al. [215]
detected only two eye movements as microsaccades out of 3375 saccades using
a value of 0.2◦ as maximum amplitude. In Table 3.1, it is visible that for all
experiments, larger amplitudes were used.

Eye movements that are similar to microsaccades (i.e., glissades and square-
wave jerks) can be detected with the same algorithms [158] and are treated
according to the researchers’ discretion; also see Section 2.4.2 for further details.
Given that the extraction of microsaccades can differ across different studies,
it is unclear if findings can be expected to reasonably generalize from one
study to another. It is often unclear why specific parameter values have been
chosen or if other values might have produced different results. Thus, VisME
was developed to support researchers in inspecting the influence of parameter
variations.

System Requirements

We identified the following requirements for our application to explore microsac-
cades, serving as a basis for the visual encoding and interaction design.

Ability to:

• explore microsaccades in the context of the entire eye tracking data in
space and time.

• explore the relationship between space and time for microsaccades.

• explore microsaccadic properties.

• explore individuals and groups of participants.

• explore the location of microsaccades within fixations.

• change parameters for microsaccade detection.

• study statistical values when changing parameters.

• differentiate between microsaccades and similar eye movements.

• explore the influence of fixation filters on microsaccades.

• explore the relationship between microsaccades and test conditions.

• integrate VisME into existing analysis pipelines.

We believe that interactive visualization, along with data filtering, is the most
appropriate approach to support scientists exploring these aspects in a visual
analytics system.
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3.1.3 Visual Analytics Approach

In this section, we detail the implemented filters for microsaccades and fixa-
tions, and the different visualization and interaction techniques employed to
explore high-frequency eye tracking data. For the analysis, fixations have to be
determined first. Afterward, microsaccades can be detected within their time
ranges, and different views can be used for visualization and interaction. The
general user interface design can be seen in Figure 3.1.

Eye Movement Filters

Eye tracking data can be grouped into different eye movement classes. Often,
these movements can be precalculated by the eye tracking system itself. In
VisME, it is possible to explore eye movements (fixations and microsaccades)
that were determined in preprocessing or with the system itself. In the following
paragraphs, we describe the filters we use in our application to interactively
label microsaccades and fixations. A more detailed description about eye
movement filters in general can be found in Section 2.4.3.

Microsaccade Filter – In contrast to detecting saccades and fixations, the soft-
ware of eye trackers do usually not provide filters for microsaccades. For
interactive microsaccade detection, we chose the velocity-threshold algorithm
by Engbert and Kliegl [111] as an example; other algorithms could have been
used as well. A free parameter λ is used for a velocity threshold in 2D space,
and a minimum microsaccade duration is also fixed. We decided upon these
parameters as they were prominently mentioned in previous work (see Ta-
ble 3.1).

Available parameters for microsaccade detection in our system are:

• λ for the velocity threshold
• minimum and maximum duration
• minimum and maximum amplitude
• minimum and maximum peak velocity
• velocity window size
• time being ignored at beginning/end of fixations (e.g., to ignore glissades)
• time being ignored after a microsaccade, i.e., minimum inter-saccadic

interval (to ignore over-shoots)
• time being ignored before/after missing data
• monocular or binocular microsaccades

Initially, we set the parameters in our system according to the values mentioned
by Engbert and Mergenthaler [113] (λ = 5, minimum duration: 6 ms, velocity
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window size: 5 samples, binocular microsaccade detection, maximum ampli-
tude: 1◦) and set minimum inter-saccadic interval to 20 ms and ignored the first
20 ms of fixations.

Fixation/Saccade Filter – Our method uses the same algorithm that we imple-
mented for detecting microsaccades but with different default parameter values
(λ = 8, minimum saccade duration: 3 ms, velocity window size: 9 samples,
minimum saccade amplitude: 1◦, minimum inter-saccadic interval: 50 ms). This
method is a saccade filter, and fixations are defined as the intervals between
two saccades. Mergenthaler and Engbert [226], Otero-Millan et al. [242], Sinn
and Engbert [290], and Laubrock et al. [201] also used this algorithm to detect
saccades. When applying different fixation filters or parameter values, it is pos-
sible that some fixations are not detected at all or multiple fixations are detected
as only one fixation. While one algorithm detects two fixations connected by
a saccade, another might detect just one fixation that contains a microsaccade.
This, of course, influences the relationship between microsaccades and fixations.
Also, if more or fewer data samples are included within a fixation, the center of
fixation shifts.

Visualizations

To explore the distribution of microsaccades, our application provides multiple
linked views [273] that can be explored interactively: A stimulus view, which
shows the stimulus, the raw data, and a scanpath visualization (Figure 3.1 A);
a timeline view for visualizing the temporal distribution of microsaccades in
relation to the eye movement (Figure 3.1 B); data plots used for visualizing
descriptive statistics and details on microsaccade distribution (Figure 3.1 C);
and histograms and scatterplots for further microsaccadic properties.

Stimulus View – The stimulus view provides an overview of the eye tracking
data. In this view, all raw eye tracking samples, fixation samples, microsaccade
samples, and missing data ranges can be shown or highlighted (Figure 3.2 (a)).
A plot with directional microsaccade distributions can be displayed with lines
that connect the start and end samples of microsaccades colored with a gradient
to encode the directions and locations of the microsaccades on the stimulus
(Figure 3.2 (b)). A common scanpath visualization for fixations and saccades is
also available (Figure 3.2 (c)). The size of the fixations can be either in relation
to the duration of fixations, the number of microsaccades within fixations, or in
such a way that each circle has the same size. Using filters, it can be decided
which information shall be visible in this view.

Timeline – The timeline (Figure 3.1 B and Figure 3.3) gives a better understand-
ing of the relationship between time, eye positions, and eye events. It is visible
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(a) (b) (c)

Figure 3.2 — Different aspects of the eye tracking data can be visualized in
the stimulus view. (a) Connected raw samples (green), connected fixation
samples (black), connected microsaccade samples (pink), and missing data
ranges (purple). (b) Directional microsaccade lines: pink for the start sample
and white for the end sample. (c) Scanpath (blue) with fixations represented
by circles (their size is in relation to the number of microsaccades within them)
and saccades by lines.

where fixations are located, and microsaccades appear. As some experiments
depend on specific temporal events, event positions can be highlighted as well.
This view is zoomable to see more details of the surroundings of microsaccades
and fixations.

Data Plots – In a separate section of our system, descriptive statistical graphics
(e.g., rose plots) and further fixation-related visualizations are used to show
more details on the dataset in relation to microsaccades and the chosen pa-
rameters. Rose plots (see Figure 3.1 C) or polar plots are used to show the
direction of microsaccades; the data is aggregated to a specified number of
bins (if not mentioned otherwise, 12 bins are used in all graphics). If multiple
test conditions are specified, data of each test condition type can be visualized
with another color value. Additionally, the mean direction and standard de-
viation are shown in black. To see the microsaccade distributions, especially
the number, and locations within fixations, the plot type can be changed; see
Figure 3.4 (a) for an example. In this image, all fixations of a trial are plotted on
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Figure 3.3 — Timeline view: timeline (top) and zoomed timeline (bottom)
to explore more details. Timelines show the eye positions in the x (orange)
and y (turquoise) direction, the velocity (gray) determined by these positions,
missing data ranges (purple) in the x and y direction, fixation areas (blue), and
microsaccade locations (pink).

(a) (b) (c)

Figure 3.4 — (a) Position of microsaccades relative to fixations of a trial in the
context of the fixations that are plotted on top of each other (microsaccades are
highlighted in pink). The marker value indicates the extent of the marked posi-
tion on the x and y axes; values are measured in visual degree. (b) Histogram
for microsaccade peak velocity and (c) the relationship between amplitude and
peak velocity as scatterplot using a logarithmic scale for the painting dataset
(see Section 3.1.4).

top of each other; microsaccades are highlighted in pink. A similar plot that
can be created with VisME shows only microsaccade directions in relation to
the fixation center. The same start and end points of microsaccades are used as
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shown in the image, and a color gradient is applied to indicate their direction,
similar to the direction plots in the stimulus view (Figure 3.2 (b)).

While all the data visualized in this area can be shown with microsaccade
directions in screen coordinates, it is also possible to transform the data in
such a way that the directions of microsaccades are rotated toward the next
fixation. For these plots, the direction to the next fixation points to the top (e.g.,
0◦ in rose plots). This transformation is useful for a better understanding of
microsaccades and the whole eye movement. To determine the relationship
toward the next fixation, a direction vector between two fixation centers is used.
For the rose plots, a microsaccade within the first fixation is translated in such
a way that its start point is located at the center of the corresponding fixation.
The angle between the vector of a microsaccade (from start to end sample) and
the direction vector determines the angle used for the direction. For the other
data plots, the direction vector determines how all data of a fixation has to be
rotated.

Histograms and Scatterplots – A further area of the system provides the
possibility to explore the temporal locations, durations, amplitudes, and peak
velocities of microsaccades in histograms and scatterplots (Figure 3.4 (b) and (c)).
Especially scatterplots that show the relationship between amplitude and peak
velocity are commonly used for both saccades and microsaccades to explore
the main sequence. Additionally, histograms show the temporal distribution of
microsaccades within fixations.

Interaction Techniques

Our visual analytics system provides many interaction methods to explore the
raw data on different levels, i.e., for fixations, participants, trials, and test condi-
tions. Interaction supports the analysis process for microsaccades, for which
we will provide some examples in the demonstration of some use cases (see
Section 3.1.4). With brushing and linking, a combined perspective of different
aspects of the data shown in different views can be obtained. The parameters
for detecting microsaccades can be modified, the visible data can be filtered on
different levels, and standard navigation techniques such as zooming and pan-
ning are available. It is possible to select which eye data (left/right/averaged)
should be used for analysis, and a rubber band is available to select a time
range in the timeline. The filters allow exploration of the data on different
levels: for participants, trials, and test conditions. Furthermore, the amount
of data visualized in the different views can be adapted by hiding different
elements. As all views are linked, it is possible to select a fixation (if a single
trial is being explored) in either time, space, or a list of all fixations to highlight
this fixation; it will be highlighted in the other views as well, the corresponding
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data plots will be shown, and some details on the fixation will be displayed.
Additionally, it is possible to walk through the scanpath for every fixation. As it
is also of interest to see relationships of sequential fixations, it can be specified
how many neighboring fixations shall be visualized, and the data plots will
include these fixations as well. Moreover, some statistical values about the
selected trials are updated when parameters change. These include information
about fixations (e.g., count, duration, or percentage containing microsaccades)
and microsaccades (e.g., count, duration, amplitude, peak velocity, count per
second/fixation, or inter-saccadic interval).

Data Import and Export

Our application uses its own format for input data to be independent of any
eye tracker. High-frequency eye tracking data is required as input, with a
minimum frequency of 200 Hz in order to detect microsaccades [158]. For each
participant, a separate file is required that can contain multiple trials specifying
raw samples, fixations, microsaccades, and event locations; a second file type
can contain information about test conditions (e.g., tasks or other trial-specific
circumstances). Files with the current (possibly calculated) eye movement data
(raw data, fixations, microsaccades, and events) can be exported for further
analysis with other statistical software such as R, Python [321], or MATLAB
and for later import into VisME. Additionally, aggregated statistics for different
properties of fixations and microsaccades containing data for each participant
and test condition can be exported for analysis in other applications. More
details about the file formats used in VisME are available by Munz [8].

Our system can be integrated into full study and analysis pipelines. Researchers
have to convert their eye tracking data into our expected input format. It is
possible to import detected microsaccades determined in other steps of their
analysis to verify their properties or to calculate a new set of microsaccades
with VisME by visually inspecting the result. Our system can then be used to
explore the data and to export the raw data along with detected microsaccades
as well as aggregated data for further processing.

Implementation Details

Our application is platform-independent and was tested on Windows 10 and
Linux. It is implemented in C++ with Qt 5.9 using the Graphics View Framework
for interactive visualizations. We reimplemented the R code available by Engbert
et al. [114] to detect microsaccades and added some additional conditions as
described previously in Section 3.1.3.
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In the preprocessing steps for the demonstration of use cases and the user study,
movements recorded by an EyeLink eye tracker were first converted from .edf
files to .asc files using the converter available by SR Research: the EyeLink
EDF2ASC Converter. Then, we used a script written in Python to create an
input file in the format expected by our application, containing eye tracking
positions and fixations. The eye positions of our raw data were originally given
in screen coordinates. Using the formula given in Section 2.4.1, we converted
them into visual angles for further processing in VisME.

In our system, only the microsaccade filter, as described before, is implemented,
but it is designed so that other methods can be implemented and added with
little effort. In order to explore microsaccades detected with other algorithms,
the precalculated data can also be imported into our system.

3.1.4 Evaluation

To demonstrate how our application can be used, we use externally collected
high-frequency eye tracking data from two independent experiments to show
use cases for our approach and in a usability study.

Eye Movement Dataset

In both experiments that were conducted to collect the two datasets, participants
were asked to look at images with some given task for the exploration. Eye
movements were recorded with remote eye trackers (Eye-link 1000, SR Research)
using a chin rest to stabilize the heads of participants. More details about this
type of eye tracker and its properties can be found in Section 2.4.1. Fixations
were determined by the system’s eye tracking software. While monocular data
is available for the first dataset, the second dataset allows binocular analysis as
well.

As a first dataset (photo dataset), we use data collected from experiment 3 of
Greene et al. [138]. It contains eye tracking data on 16 participants who viewed
20 grayscale natural images for 60 seconds whilst performing one of four tasks.
The tasks were: memorize the picture (memory), identify the decade in which the
picture was taken (decade), assess how well the people in the picture know each
other (people), and determine the wealth of the people in the picture (wealth). The
data was recorded at 1000 Hz, and only the right eye was tracked. The dataset
was originally created to verify Yarbus’s assumption that the eye movement
is highly influenced by an observer’s task. We chose this dataset because it is
high-frequency data that allows extraction of microsaccades, and participants
performed different high-level cognitive tasks that were likely to have engaged
covert attention even if the study was not designed to investigate this aspect of
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gaze behavior. Many researchers believe that covert attention can influence the
frequency of microsaccades and their directions (e.g., Hafed and Clark [141],
and Hermens and Walker [149]; also see Section 2.4.2).

The second dataset (painting dataset) was recorded to explore the occurrence
of microsaccades in free-viewing conditions. It is available at 500 Hz for both
eyes. Gaze samples for averaged eye movements were determined as the mean
value of right and left eye positions and fixations as the maximum fixation areas
of both eyes. Twenty participants looked at 60 randomized colored paintings
showing multiple persons for about 15 seconds per image. The participants’
task was to pay attention to the presented people, their mood, and relationship
to each other (acquaintance), and they had to answer questions afterward.

Use Cases

We demonstrate how it is possible to visually explore the directions and distri-
butions of microsaccades with VisME. For this exploration, we use the initial
parameter values mentioned before in Section 3.1.3.

Detecting Glissades – Glissades are eye movements that immediately suc-
ceed saccades (see Section 2.4.2). In order to demonstrate the confusability of
microsaccades and glissades at the start of fixation periods, we changed the
potential glissade duration to 0 ms; this is an adjustable parameter in VisME.
Subsequently, we inspected the stimulus view and timeline with highlighted
microsaccades of one trial of the painting dataset. We noticed that many detected
microsaccades were both spatially and temporally located at the beginning of
fixations, right after saccades. Velocity peaks also indicated that they might be
microsaccades. However, as they are located right after saccades, they are more
likely to be glissades (see Figure 3.5). Additionally, we had a look at the his-
togram for the temporal location of microsaccades within fixations (Figure 3.6
(a) and (b)): it is visible that for both the current trial and the whole dataset,
there is a high peak for potential microsaccades within the first 40 ms, which
might be glissades instead. This suggests that this phenomenon is present in
the whole dataset. Thus, we modified the parameter for the potential glissade
duration from 0 ms to 40 ms for the painting dataset for the remaining part of
the analysis. Note that this parameter would be arbitrarily determined by most
researchers with no opportunity for reanalysis by others in the absence of a tool
like VisME. In Figure 3.6 (c) and (d), the early fixation period was excluded
from the analysis, which resulted in a more suitable distribution of detected
microsaccades. There is still a peak in the second bin (Figure 3.6 (d)) but visibly
diminished relative to the previous first bin. This could explain why Hicheur
et al. [154] did not consider microsaccades within even 50 ms after a saccade.
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(a) (b)

Figure 3.5 — Eye movement is de-
tected as microsaccade (pink); it
can be identified as glissade on
the stimulus and in the timeline:
(a) Connected samples that belong
to the microsaccade are located at
the beginning of the fixation (black).
(b) Zoomed view of the timeline:
the detected microsaccade is located
at the beginning of a fixation (blue)
right after a saccade. (x values: or-
ange, y values: turquoise, velocity:
gray). Example used from the paint-
ing dataset.

We noticed this behavior in both datasets; for the photo dataset, we chose a
threshold of 20 ms to obtain a similar distribution. Depending on the chosen
fixation filter and possibly other reasons we are not aware of, this value might
have to be chosen differently for other datasets. Our system can be used to find
a suitable minimum time range to remove glissades without removing actual
microsaccades from further analysis.

Microsaccade Directions for Test Conditions – To visualize the microsaccade
directions across different tasks, rose plots were employed to illustrate, for all
available trials, the distribution of microsaccades in every direction (Figure 3.7).
This reveals potential asymmetry in the circular distribution of microsaccadic
movements. We use both datasets and differentiate trials for the photo dataset
by different tasks, and for the painting dataset, we visualize all data together.
In the first row, the photo dataset reveals a tendency for microsaccades to
be oriented horizontally and vertically within the image. For the painting
dataset, microsaccadic movements were biased toward the top, which could
be indicative of a recording bias. The rose plots in the second row illustrate
the directions of microsaccades relative to the next fixation (toward the next
fixation means to the top of the graph). The photo dataset revealed a tendency of
microsaccades toward the next fixation (especially for the task people), indicating
that microsaccades predict the next fixation. Additionally, there is also a strong
tendency toward the opposite direction. For the painting dataset, a similar
vertical bias was visible that was less pronounced and favored the opposite
direction to the next fixation. In these plots, no correlation between the two
tasks related to people (people and acquaintance) is visible, but a similarity of
data recorded in the same experiment can be seen. A possible reason why these
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(a) (b)

(c) (d)

Figure 3.6 — Temporal positions of detected microsaccades as a histogram for
(a) one trial of one participant and (b) all trials of all participants in the painting
dataset (bin size: 40 ms). A high peak in the first bin indicates that many
glissades (over-shoots right after saccades, here in the subsequent 40 ms) were
detected as microsaccades. Figures (c) and (d) show the same data when all
microsaccades within the first 40 ms of a fixation are ignored from the analysis.

different results are obtained might be due to data quality and existing noise
when using monocular data.

Microsaccade Directions for Participants – Our next step was to examine the
data on an individual level for different participants. For selected participants
viewing the painting dataset, images are visible in Figure 3.8. It is possible to see
how data can vary between different participants: the images show results for
participants that might indicate that microsaccades move toward the next fixa-
tion, the opposite direction, or in arbitrary directions. Such visualizations could
support researchers in identifying different microsaccade patterns available
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memory decade people wealth acquaintance

Figure 3.7 — Rose plots for microsaccade distributions for the four different
tasks of the photo dataset (memory, decade, people, and wealth) and the painting
dataset (acquaintance). First row: directions of microsaccades in screen coordi-
nates as visible on the stimulus. Second row: microsaccade directions in local
coordinates: they are rotated in such a way that 0° means that a microsaccade
is in the direction to the next fixation. Min and max specify the values in the
middle of the plot and on the outer circle, respectively; values are measured in
microsaccade count.

(a)

(c)

(b)

Figure 3.8 — Rose plots showing
microsaccade directions rotated to-
ward the next fixation for a selec-
tion of participants from the paint-
ing dataset. Participants whose mi-
crosaccades have a direction that (a)
tends to be toward the next fixation,
(b) toward the opposite direction,
and (c) that are equally distributed
toward each direction.

for certain participants and compare if patterns are similar to the aggregated
directional distribution of all participants (see Figure 3.7 (acquaintance, bottom))
or rather outliers.

Microsaccade Detection for Changed Parameters – In order to see the strong
influence of parameters on the detection of microsaccades, we used two different



3.1 • Visual Exploration of Microsaccades 73

(a)

(b)

Figure 3.9 — (a) Result of the mi-
crosaccade filter when changing
all parameter values in such a way
that more microsaccades can be
detected using values in the range
as given in Table 3.1 and (b) when
using parameter values to limit
the detection. A trial from the
photo dataset is shown.

settings of parameter values taken from the value ranges visible in Table 3.1:
the first settings contain values that result in few microsaccades (minimum
intersaccadic interval: 80 ms, maximum amplitude: 1◦, minimum duration:
12 ms, λ = 8, velocity window: 5 samples, ignore time at beginning of fixations:
50 ms; parameters not mentioned were deactivated) and the other ones in many
(maximum amplitude: 2◦, minimum duration: 6 ms, λ = 3, velocity window:
5 samples). The first parameter settings missed many actual microsaccades,
and the second one detected many false microsaccades. The difference in the
number of detected microsaccades varied for the trial visible in Figure 3.9 from
only 4 to 184 (if glissades were excluded (here, the first 20 ms of a fixation), still
138). It is apparent that there is a large range of possible sets of microsaccades
that can be detected with values chosen between these two different settings.
It clearly shows that, as introduced in Section 1.1 in the context of RQ2, it is
important to select appropriate parameter values for the analysis. The visual
analytics system can help in exploring the data to choose appropriate values
for a given dataset. A visual inspection of the stimulus view is necessary to
confirm if the parameter changes improve the detection of microsaccades or
result in false positives or missed microsaccades.

To further explore the influence of parameter choices, we explored changes
of individual parameter values to the maximum or minimum values given in
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Table 3.1. We created aggregated statistical distributions for all participants and
trials to show how they change when adapting parameter values; visualizations
of the results can be found in the supplemental material of the corresponding
publication [10]. In the following, we compare the results of our default
settings to some adaptions. We can see a strong influence for different velocity
threshold (λ) values. Mergenthaler and Engbert [226] use λ = 3 for freeviewing
experiments. Using the same value for our datasets shows an increase in the
number of detected microsaccades by a factor of three. The main direction
changes toward the bottom and more microsaccades are detected with smaller
velocities, amplitude, and duration. Some of them are also located at a later
position during a long fixation. When using λ = 10 [161] instead, fewer
microsaccades are detected, which are mostly moving to the left and right
side. The number of microsaccades is reduced for small peak velocities, high
duration, and small amplitudes. When the threshold for the minimum duration
is increased, fewer microsaccades with smaller duration and smaller amplitude
are detected. Changing the size of the velocity window [63] shows only for the
painting dataset a noticeable different pattern. In the main sequence, we see
microsaccades with very large velocity values; this might be an indication of
noise. The other plots also show slightly different patterns (e.g., the duration
histogram seems to be shifted). As the painting dataset was recorded for both
eyes, we can compare the influence of using monocular or binocular detection.
Using monocular detection, more microsaccades are detected. There is an
increase in microsaccades with higher peak velocity, smaller duration, and
smaller amplitude. We can also see that many microsaccades have a direction
toward the bottom of the screen.

Influence of Fixation Filters – As the fixations themselves also influence mi-
crosaccades, we used the fixation filter of our system (see Section 3.1.3 for
details) to detect different fixations than the ones already determined by the
software of the eye tracker. In Figure 3.10, the raw data with highlighted fixation
and microsaccade samples is visible for an example scene. The left images were
created for the fixations provided by the system’s eye tracking software, and
the right ones were created for the fixation filter of VisME. It is visible that the
fixations change most notably in size, and hence, the microsaccade amount and
directional patterns change as well.

In our exploration process, we observed that microsaccade distributions de-
pended on different factors. Fixation labeling defines the data that is used for
the extraction of microsaccades and defines the spatial relationship between
microsaccades and the next fixation. Microsaccade parameters are important
for the calculation of microsaccades within these fixations. They influence,
for example, if confusable eye movements (e.g., glissades) will be regarded as
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Figure 3.10 — The usage of another fixation filter influences the sample ranges
used for microsaccade detection and, thus, the rose plot visualizations. The left
images use the fixations from the eye tracking software, and the right ones use
the fixations calculated by VisME. Microsaccade detection was performed in
both cases using the microsaccades filter with default parameter values. In the
images at the top, some differences in the detected fixations are highlighted in
blue. In the images at the bottom, it is visible that the microsaccade distribution
for the trial changes as well.

microsaccades, which has a strong influence on the overall statistics. By looking
at individual trials, it is possible to determine if small microsaccades were
missed or if fixation samples might have been mislabeled as microsaccades.
Overall, it is possible to explore interactively the effects of parameter value
changes using all previously mentioned visualizations and further statistical
values provided by the system. For instance, for unknown datasets, it is possible
to verify whether the parameter choices for microsaccades exploration were ap-
propriate. Additionally, we showed that our system can handle both monocular
and binocular eye movement analysis, and it is not limited to one type only.
It is up to the researcher to handle noise in preprocessing and to verify if the
detected microsaccades are correct. Aligned with our idea to support repro-
ducibility, critical readers of research reports who want to verify the plausibility
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of suggested research results benefit from such a system. While there is an
increase in sharing raw data when publishing research, it additionally requires
a software system to reanalyze the data or reproduce the results. With VisME,
researchers will be able to check for themselves if applied parameter settings or
filters are appropriate or if there might be other settings that would better fit
the data.

Usability Study

We performed a usability study with a think-aloud protocol analysis [117]
to collect qualitative feedback (see Section 2.7) on the usefulness and usabil-
ity of VisME for eye movement researchers. First, participants completed a
questionnaire on their research background. Next, we introduced them to our
system by explaining VisME’s main features. Subsequently, participants used
the system to explore the painting dataset of our use cases. We provided a
list of tasks to guide the participants’ use of the system and to support their
awareness of available features. Nonetheless, participants were also encouraged
to freely explore the use of the system for whichever aspects interested them.
The participants were able to explore how adjusting different parameter values
influenced derived microsaccadic statistics by observing how doing so impacted
the different visualizations. Some participants asked for specific features and if
they were available in the system; we demonstrated to them that such features
were already implemented. Finally, the participants were asked to complete a
standardized questionnaire on usability [71] that was extended to include some
eye tracking specific questions. Each question was rated on a Likert scale from
1 (strongly disagree) to 5 (strongly agree). Participants could provide additional
text feedback and suggestions for future improvements.

We conducted the user study with 12 voluntary and independent eye tracking
experts (three women and nine men; 11 participants were between 20 and
39 years old, and one was at least 50 years old) who are not authors of the
corresponding paper [10]. Our participants’ backgrounds include computer
science, physics, and neuroscience. We wanted to have eye tracking experts with
different research goals, especially those who work with microsaccades. The
eye tracking researchers belong to four different research groups with special-
izations in different eye tracking and eye movement related areas. These areas
include the analysis of microsaccades, the relationship between eye movements
and neuroscience, the development of medical devices to enhance vision, and
the development of new eye movement-related algorithms. Three of our partici-
pants had more than five years of experience with eye tracking, four between
three and five years, and five less than three years. Eight of the researchers rated
their eye tracking experience from 4 (high) to 5 (very high) on a scale from 1 to
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5 (mean: 3.9). Proficiency with microsaccades varied among participants: Four
stated to have high and very high experience (4 and 5), whereas six stated to
have little and very little experience (1 and 2); the mean value was 3. More than
half of all participants claimed to use visualizations often in their analysis.

Before starting the actual experiment, we asked the participants about their un-
derstanding of microsaccades and how they would filter for them. Depending
on their proficiency with microsaccades, they could provide detailed infor-
mation. Most researchers mentioned that microsaccades are located within
fixations. The maximum amplitude of microsaccades was stated as ranging
from 0.5◦ up to 2◦ by different participants, but most of them employ a thresh-
old of 1◦. Furthermore, some mentioned that a manual inspection of each
detected microsaccade is very important. For the detection of microsaccades,
the algorithm by Engbert and Kliegl [111] was named by a few researchers,
which confirms that our initial algorithm choice was appropriate. For some
researchers, it is very important that the detection is done on binocular data,
while others use monocular data. This also shows that it is important to support
both types of data analysis in our system. Additionally, we asked participants
how they would process eye tracking data to explore microsaccade distribu-
tions. Most of them described similar approaches to the one we realized in
VisME. Additionally, they would verify the data quality at the beginning. Most
participants would use MATLAB as analysis software.

All participants liked our system, were able to use it without any problems, and
gave a lot of positive feedback. They agreed that our system could be beneficial
for teaching purposes (mean: 4.9) and that the eye tracking community would
benefit from such a tool (mean: 4.3). The question of whether participants
would prefer to use this software over the steps they described initially for
exploring microsaccades had a mean value of 3 and the highest standard
deviation. This roughly correlates with the proficiency with microsaccades
analysis. Researchers who have less experience were more likely to choose this
software. All researchers agreed that VisME served its intended purpose of
rendering the analysis of microsaccades more reliable and transparent.

In particular, the interactive and visual features of our system were received
positively. The possibility to click on fixations that are then highlighted in both
space and time and the possibility to scroll through trials were highlighted as a
preferred feature. Many researchers stated that VisME is especially useful to
get a quick overview of the data.

Recommendations for additional features varied widely depending on the
participants’ research background and interests. For a system supporting the
whole analysis process, participants suggested that our system should be able
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to deal with preprocessing steps like data smoothing or processing of eye blinks
as well; currently, preprocessing of raw data has to be performed externally.
Furthermore, manual inspection of microsaccades is very important. Therefore,
manual correction of both fixation and microsaccade areas would be required
to adapt detected eye movements that were not marked correctly. Additionally,
analysis related to specific events is very important, especially in controlled
experiments. In our system, it is possible to visualize the temporal positions of
events, but it is not possible to consider temporal aspects related to the events
in the analysis. Currently, it is possible to analyze microsaccade directions
in relation to neighboring fixations; two participants asked for an extension
to allow this analysis to be performed in relation to arbitrary target positions
on the stimulus (e.g., the center of an image). As there are many different
approaches available to detect microsaccades, some participants wished for
further algorithms to be supported.

3.1.5 Conclusion

We present a visual analytics system for exploring eye tracking data, with a
focus on microsaccade analysis. With this system, eye movement researchers are
able to explore and understand microsaccade distributions in space and time.
In particular, the interactive nature of the visualizations, namely the ability to
vary multiple parameter values, allows researchers to determine how sensitive
their findings are to parameter variations. This system is tailored for research
purposes in that it allows researchers to analyze microsaccadic patterns on
the level of participants, trials, and test conditions. It also allows for flexible
adjustments of parametric values across these levels in order to account for
huge individual differences, if necessary.

Our system allows for more transparent discourse between researchers and
increase the value of public datasets; it supports reproducibility and promotes
open research. Eye movement researchers are able to decide for themselves
if appropriate parameter values were used, as well as to discover unexpected
eye movement behavior or verify novel hypotheses on old data. Our system
is especially helpful in getting an overview of available datasets and provides
a simple approach to exploring microsaccades for researchers with little expe-
rience. In addition, it can serve as an instruction system to help researchers
better understand microsaccade movements and issues in their detection. While
there remain many possible additions to the application (see user feedback in
the previous section), we believe that eye movement researchers profit from its
visual analytics features to explore microsaccades.
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3.2 Comparative Gaze Analysis

In this section, a visual analysis approach (Eye Tracking Fusion Sys-
tem (ETFuse)) [12, 13] is presented to explore eye movement data from
two people playing competitive and collaborative virtual board games. While
the previously presented system focuses on analyzing eye tracking data from
one participant at a time and an aggregated analysis for a larger group, this
approach allows a detailed comparison of the eye movement of two people. The
previous approach mainly focused on detecting and analyzing eye movements,
and this approach focuses on joining data streams from different sources for
their analysis.

This section is based on the following publications:

• T. Munz, N. Schäfer, T. Blascheck, K. Kurzhals, E. Zhang, and D. Weiskopf. Com-
parative visual gaze analysis for virtual board games. In Proceedings of the 13th
International Symposium on Visual Information Communication and Interaction (VINCI
’20), article 11, pages 1–8. Association for Computing Machinery, 2020, doi:
10.1145/3430036.3430038 [12].

• T. Munz, N. Schäfer, T. Blascheck, K. Kurzhals, E. Zhang, and D. Weiskopf. Demo
of a visual gaze analysis system for virtual board games. In ACM Symposium on Eye
Tracking Research and Applications (ETRA ’20 Adjunct), article 2, pages 1–3. Association
for Computing Machinery, 2020, doi: 10.1145/3379157.3391985 [13].

The images shown in this section were created with the following source code/material:

T. Munz, N. Schäfer, T. Blascheck, K. Kurzhals, E. Zhang, and D. Weiskopf. Supplemental
material for comparative visual gaze analysis for virtual board games. DaRUS, V1,
2020, doi: 10.18419/darus-1130 [11]. (The source code is also available on GitHub:
https://github.com/MunzT/ETFuse.)

This section introduces a visual analysis approach (Figure 3.11) for the combined
gaze analysis of two players competing against each other in a web-based game.
The fact that eye movement data of players involved in the same online game is
usually recorded on separate computers, perhaps using different eye tracking
devices with different sampling frequencies, is challenging for comparative
analysis. Synchronizing and comparing such eye movement data can be difficult
and time-consuming. In our approach, the eye movement data of two players
recorded on different devices can be synchronized and visually represented for
analysis purposes. As input, it uses the eye movements (fixations and saccades)
collected with two different eye trackers and detected with their corresponding
software, video streams, mouse click events, and possibly additional temporal
events. We demonstrate the effectiveness of our approach by applying it to an
online version of the board game Go [125].

https://doi.org/10.1145/3430036.3430038
https://doi.org/10.1145/3379157.3391985
https://doi.org/10.18419/darus-1130
https://github.com/MunzT/ETFuse
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Temporal events
(mouse clicks):
Player 1 - dark gray
Player 2 - light gray

Distance plot:
Gaze positions are ... 
close to each other - orange
far apart - light yellow
outside the board area - dark gray
missing - light gray

Gaze plots:
Player 1 - black
Player 2 - white

Attention maps:
Player 1 - blue
Player 2 - purple

A
C

B

Figure 3.11 — Interface of our visual analysis system representing the eye
movement data of two people playing the board game Go. The main area (A)
shows the screen content of the first player (black stones), which contains
the board (B) and a control panel to the right. Overlaid on the board are
attention maps (blue and purple hotspots) and gaze plots (black and white
circles connected by line segments) for a specific time frame for both players.
(C) Below the main area, we provide a timeline highlighting important events as
well as a distance plot that visualizes the proximity between the players’ gazes.

This approach also deals with RQ1 and RQ2 similar to the system presented in
the previous section: an interactive tool to explore the temporal eye tracking
data with multiple visualizations is presented. Both static visualizations and
animations can be used to explore the data. Additionally, parameter choices
for the joining of the data from different devices influence how well the data
streams are aligned and how well the comparison of the data can be performed.
Further, different interval sizes can be selected for aggregated visualizations
(attention map and distance plot) that may also influence what is perceived
from the data during analysis.

The main contribution of this work is to provide a synchronization and com-
bined visualization approach for eye movement data collected on independent
and possibly different hardware for multiple participants. Hereby, different
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methods to merge the data are presented. The source code, an example dataset,
and a video for demonstration are publicly available [11]. This work is an
extension of the bachelor’s thesis of Noel Schäfer [279].

3.2.1 Related Work

We discuss the two research areas related to our work: eye tracking in the
context of games and visualization of eye movement data.

Eye tracking for games [38] has become increasingly important in recent years,
as discussed, for example, in EyePlay [316]. Related work can be separated into
research on live systems communicating gaze positions between people and
research on post-study analysis [73].

Smith and Graham [292] investigate gaze as an input modality for video games
but do not consider gaze as a visual cue for other players. Sundstedt [303]
gives a general overview of gaze input in games. Isokoski et al. [170] provide
multiple examples of gaze-controlled games, including the board game Go.
Lankes et al. [199] and Newn et al. [232, 233] provide gaze visualizations to
players of a competitive board game and analyze how this cue influences
their strategies. Maurer et al. [220] conduct similar research on collaborative
games and Niehorster et al. [235] on collaborative and competitive visual search
tasks. Furthermore, Vertegaal [325] presents a live system for gaze-aware
communication between multiple people. Related work focuses on including
gaze into remote scenarios, for example, to improve avatar communication or
collaboration [99] and teaching [296, 346] scenarios. Further, Špakov et al. [295]
use a VR context and share the focus between two players. The analysis of
recorded gaze for post-hoc analysis is not the focal point of the publications
mentioned above. Our work does not focus on gaze-aware communication but
aims to provide detailed spatial and temporal analysis methods to investigate
gaming scenarios with two players. However, because spatial and temporal
matching between data sources is performed automatically, we see the potential
of our approach also to be applied for live visualization of gaze, for example, in
training for complex games, similar to EyeChess [293].

Gaze is a valuable component for game analytics [110], investigating the players’
strategies and behavior [304]. Choi and Kim [87] and Almeida et al. [37] inves-
tigate the gaze distributions in first-person shooter games. Jermann et al. [174]
use dual eye tracking and apply descriptive statistics to the gaze of two people
playing a collaborative game. Shvarts et al. [287] synchronize and analyze data
collected from head-mounted eye tracking devices. Charness et al. [82] compare
expert and intermediate chess players’ strategies but do not investigate the
dynamics between players’ gazes during a game. Kumar et al. [190] perform
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a visual analysis of checker games, focusing on analyzing gaze distributions.
Hessels et al. [150, 151] analyze the gaze of people looking at each other. In
contrast, we introduce an approach for spatio-temporal analysis with specific
comparison methods that help effectively analyze two players together.

Visualization plays a vital role in assessing statistical results and data exploration
for hypothesis building. A survey of different techniques for eye tracking
visualization is provided by Blascheck et al. [60]. Based on a taxonomy of eye
tracking analysis tasks [195], techniques that enable comparing players viewing
the same stimulus include timelines, attention maps, or gaze plots; also see
Section 2.4.4 for details on these visualization types.

Timeline visualizations show the temporal evolution of gaze information. For
example, gaze stripes [194] display a portion of the stimulus around a fixation as
a timeline. However, we cannot use this technique because the stimulus snippets
would be too similar due to the regular shape of a board game. As we are
interested in the temporal similarity and difference of the participants’ focus, we
use a comparative timeline visualization. Additionally, we apply attention maps
independently for both participants and show them on top of each other as an
overlay on the stimulus to enable the exploration of differences and similarities.
Gaze plots show the spatio-temporal order of fixations and saccades on a
stimulus. This leads to visual clutter if gaze plots of all participants are depicted
together. However, if only selected participants are compared or only short
time spans are analyzed, in addition to animated changes [337], this technique
enables analysts to compare eye movement data of participants on animated
stimuli. This technique is helpful in our approach, to explore and compare the
reaction to sudden changes in the stimulus.

3.2.2 Requirements

Our goal is to provide a way to analyze and compare eye movement data from
two players who play collaborative and competitive board games against each
other. The dynamic stimuli show the same gameplay to both participants, albeit
on different computers that the participants are using to play against each other.
This means that each player sees—at least for the most part—the same screen
content, and for each player, the eye movements are recorded independently
with stationary eye tracking systems. The input data required for our approach
are each participant’s gaze positions, screen recordings, and temporally logged
events (e.g., mouse clicks). Such data might be obtained from recording devices
with different hardware (screen resolution, sampling rate of the eye tracking
systems), and the recordings might have started at different times. Therefore,
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the data has to be temporally synchronized and mapped to a common screen
area for the analysis. The following aspects have to be considered:

A1 Bi-directional mapping of gaze to the screen recordings.

A2 Temporal synchronization of data.

A3 Handling different recording frequencies.

After fusing the data, we support visual analysis with appropriate visualizations
and interactions to explore interesting areas of the recordings. As a team of
visualization researchers, eye tracking experts, and an experienced Go player
(2-dan amateur player) who supported us in the analysis of our collected data,
we identified the following requirements to compare eye movement data of
multiple participants and support the visual analysis. More details about how
we determined the requirements are available in Section 2.6.

R1 Subdivide time into intervals defined by important events that can be
extracted from logged data (e.g., when a player performs a mouse click to
put a stone on the board).

R2 Mark additional temporal positions (e.g., of interest to the analyst) and
use them for the subdivision into intervals.

R3 Identify temporal areas for the analysis (e.g., during which gaze positions
of multiple participants are close together).

R4 Allow visual comparison of gaze positions of multiple participants (e.g.,
with gaze plots and attention maps).

3.2.3 Visual Analysis Approach

With our visual analysis approach ETFuse (Figure 3.11), the comparison of eye
movement data of two participants is possible. In the following, we outline our
automatic approach to prepare eye movement data for analysis (A1–A3), and
our visualization concepts for visual analysis (R1–R4) to detect and analyze
interesting temporal and spatial areas within the recordings. Figure 3.12 shows
an overview of our approach. Our system is implemented in Java.

Image-based Mapping and Synchronization

As the first step, the eye movement data from the two players has to be spatially
registered (A1) and temporally synchronized (A2). Both can be achieved
automatically by exploiting the image properties of the recorded videos.
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Figure 3.12 — Overview of our visual analysis approach.

Spatial Registration For the spatial mapping (A1), a coordinate transformation
of the eye movement data of one of the players is performed to fit the recording
for the other player. We model this mapping as an affine transformation and
restrict it to the crucial part of the application for the analysis: the game board.
The boards may be shown in different sizes for both players at different screen
positions with different resolutions and aspect ratios. The remaining area on the
screen may show different content for both players, such as additional graphical
interface elements (e.g., a chat area) that are ignored from the mapping. In the
analysis, users have to keep in mind that only the video of one player is shown.
If eye movement data from the second player is displayed outside the specified
region, this player might have seen a different screen content than the current
video suggests. The analysis could be limited to the relevant cutout; however, it
is still interesting to differentiate if a player looked elsewhere on the screen or if
eye movement data was not available at all.

Temporal Synchronization We developed three methods to temporally syn-
chronize (A2) the videos and eye movement data of two players. We assume
that each player’s video and eye movement data are synchronized.

A simple approach is using system timestamps. The synchronization accuracy
depends on the quality of the system time on the individual machines used with
the eye tracking software. In our experiments, we observed time differences
between 0.3 and 5 seconds. It would be possible to set up additional time
synchronization between the two machines to achieve higher accuracy. However,
this would make our approach less flexible.

Our image-based histogram method can provide a more accurate result. Here,
the goal is to identify the first frame in both videos that matches a given board
configuration. Histograms are calculated for the individual color channels
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and used to compare images for their similarity [79]. Multiple methods are
available to compare histograms [80]; we use the Pearson correlation coefficient
as a measure [240]. Our approach tries to find the first frame of a new board
configuration (i.e., after putting a new stone on the board) by comparing
histograms for the area of the board. With increasing screen resolution, the
reliability of histogram comparison decreases as the number of images with
similar histograms but different content increases. To avoid this problem, the
frames of each video are divided by a grid into multiple cells to calculate and
compare multiple histograms for each frame. For the selection of the grid
size and the thresholds to detect similarity, it has to be considered that mouse
cursors and half-transparent preview stones may influence the comparison
and create wrong results. The first frame of a new configuration is found by
repeatedly comparing it with previous frames until the histogram dissimilarity
is above a certain threshold. Once this starting frame is found in the first video,
we compare its histogram with frames from the second video until the earliest
most similar frame is found. This approach also supports games other than Go
and even other stimuli other than games.

We developed a third method that explicitly uses the context of a board game to
find the frame when a specific stone was placed on the board in both recordings.
The color at the position of the stone is compared for frames of the first video
to detect when the stone was put on the board. Next, our method looks for the
same color change for this stone in the other video and uses the time difference
between both videos for synchronization. As before, mouse cursors and preview
stones may influence the result. To avoid wrong synchronization that may be
introduced by a color change of the mouse cursor, our method checks the color
on two different positions on a stone, and the detection mechanism is based on
a minimum color change. While this approach was designed for Go, it can also
be used for other board games (e.g., chess) in which a sudden change of color
for a specific position can be used for synchronization. This approach creates
the most accurate results but may occasionally fail due to some different screen
content (e.g., mouse cursor, preview stones, different textures of stones/board)
shown on different machines.

The latter two methods may use the system timestamps to increase performance
by providing estimated timestamps to find initial frames in the second video.
This also avoids wrong synchronization results if the same board configuration
is reached multiple times. Due to some varying time delays in the appearance
of new elements resulting from the network connection, it is impossible to
match the videos of the two players exactly. We observed a typical delay for
the appearance of new elements in the range between 0 and 0.2 seconds after
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(a)

(b)

(c)

Figure 3.13 — (a) Timeline with positions of mouse clicks (lighter color for
one player and a darker color for the other one). (b) Distance plot temporally
subdivided by equal intervals of two seconds, and (c) by mouse clicks of both
players.

the synchronization; this delay may occasionally be larger due to the network
connection.

Visual Comparison Methods

Our visual analysis approach combines several visualizations for the analysis of
collaborative and competitive content in a graphical user interface (Figure 3.11):
a timeline highlighting important events (R1, R2; Figure 3.11 C), a distance
plot (R3; Figure 3.11 C), gaze plots (R4; Figure 3.11 B), and attention maps (R4;
Figure 3.11 B). For temporal subdivision, mouse clicks (R1) and analyst-defined
additional temporal events (R2) are taken into account.

Mouse Clicks and Custom Events In a timeline, we highlight the position
of important temporal events (R1, R2). The placement of a new stone is often
connected with a change of attention for the players. A player triggers these
events with a mouse click. The eye tracking system logs such events, and it is
possible to visualize their temporal position (see Figure 3.13 (a)). Further events
can be added manually to show them in the analysis. This is especially useful
if interesting things happen on the screen that the two players do not influence.
An example is when the players play against further opponents whose data
is not recorded. Such events are shown in custom colors and can be used to
subdivide the timeline into intervals (R2) for the distance plot and for updating
the attention maps (see following paragraphs).

Distance Plots Below the timeline for events, we use a 1D plot to visualize the
distance between the gaze positions of two players (R3). This visualization helps
detect periods when players look at positions on the board that are close to
each other. First, we divide time into intervals. This can be done for predefined
equally sized time periods or according to specific events (see Figure 3.13 (b)
and (c)). Then, we assign the color of one of four categories to each interval.
Light gray is used when no eye movement data is available within the interval
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Figure 3.14 — Rengo game. Both players are on the same team, playing the
white stones. Player 2 (orange fixation) looks intensely at one part of the board.
Player 1, while also checking the board, glanced at the picture of a player on
the opposing team (green circle on the right side).

for at least one player. This is often visible at the beginning or end of the
timeline because the players usually start and stop their recordings at different
times. Additionally, it may indicate that players looked away, closed their eyes,
or, if intervals are small, that they blinked. Dark gray is used if most of the
gaze positions are outside the board. Light yellow indicates that the distances
between the gaze positions of both players on the board were mainly above
a threshold. In all visualizations showing this approach, we use a threshold
of 150 pixels, which equals about three cells on a board with a 19 × 19 grid.
Orange highlights periods during which the distance was mainly below this
threshold. As the frequencies of both recordings may differ, it is impossible
to compare gaze positions directly. Instead, we upsample the lower-frequency
data to then compare it to the gaze positions of the data recorded at the higher
frequency (A3).

Gaze Plots A gaze plot (see Section 2.4.4) is a common visualization method
used in eye movement research. It is often used for eye tracking data on static
images but also used dynamically for video material (R4). As our stimulus
changes over time, we show new gaze information in real-time. To keep track
of the previous fixations, some of them are visualized as well. In our approach,
we show joined gaze plots of multiple players (in different colors), in which all
fixations are drawn by circles connected by straight lines representing saccades
(see Figure 3.14). The most recent fixation is more opaque than the previous
ones.

Attention Maps Attention maps (see Section 2.4.4) are a more scalable visual-
ization for many gaze positions. They highlight areas that people focus on most.
Our approach generates the attention maps for fixations within a specified
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Figure 3.15 — Player 1 (black)
is focusing on the two white
stones in the center of the board
(blue hotspot) and is ready to
capture them, which would end
the game. Player 2 focuses on
the only escape route for the two
white stones.

interval. It is possible to show the attention map of only one player or multiple
players as overlays (R4). To display multiple attention maps simultaneously,
each player is represented by a distinguishable color whose alpha channel goes
from opaque to transparent. Figure 3.15 shows an example in which blue is
used for one player and purple for the other player. The time interval for
calculating attention maps can be an analyst-defined interval (e.g., for the entire
time of a match) or multiple predetermined intervals to show dynamic changes
in attention. The previously mentioned logged and manually specified temporal
events can be used to calculate attention maps between every two events and to
update the overlay according to the current temporal position.

3.2.4 Evaluation

To illustrate the effectiveness of our approach, we apply it to Go, the oldest
known board game in human history whose rules have not changed since its
inception. Go has high state-space and game-tree complexities [339] and has
been recently solved (i.e., AI programs defeating the strongest human players)
by AlphaGo, a software developed by Deep Mind based on DL [288, 289].

The standard Go board contains a 19 × 19 grid, on which the two players take
turns to place a stone of their respective color (black or white). Stones already
placed on the board by one player can be captured by the other player under
certain conditions. At the end of the game, both players count their respective
territory. The player with more points wins the game. In addition, Go can be
played between two teams of players, called Rengo [286]. Typically, each team
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consists of two players who take turns to place stones of their color on the
board.

In the following, we use the results from some game scenarios as an illustra-
tion of the capability of our approach and to demonstrate how our approach
can be used to explore the behavior of participants playing board games. Fu-
ture work with a more extensive user study involving a larger number of
participants would be required to strengthen our findings and discover new
hypotheses.

Some possible questions that can be explored:

Q1 Is there a difference in focused areas between players, reflecting their
intentions, experience, or styles?

Q2 Do players know what they want to do next or do they have to think about
multiple possible next moves?

Q3 Is a player focused while it is the other player’s turn?

Data Acquisition

We collected data from several Go matches during which two volunteers played
the virtual board game KGS Go [125] via internet connection against each other
or in collaboration against two other opponents whose eye movement data was
not recorded. The first player has a strength of 1-kyu, which puts him at the
top of the bracket of intermediate amateurs, and the second player has a strength
of 2-dan, which puts him in the bracket of advanced amateurs. We used two
different remote eye tracking devices to record the data, which differ in their
recording frequency and monitor resolution (see page 26 in Section 2.4.1 for
details on this type of eye tracking system). The first device was a Tobii Pro
Spectrum 1200; it has a screen resolution of 1920 × 1080 pixels, eye movement
data was recorded at 1200 Hz, and the Tobii Pro Lab software was used to
record the eye movements and the screen. The second device was a Tobii T60XL;
it has a screen resolution of 1920 × 1200 pixels, recorded at 60 Hz, and Tobii
Studio collected all data.

The recordings were performed in a lab space isolated from outside distractions.
Calibration and recording were run independently for both participants on
their devices, and the players started a match once everything was set up. The
participants played different types of matches against each other, leading to a
variety of different game scenarios for the analysis. Each match lasted between
4 and 11 minutes, and matches were performed on different grid sizes.

The more experienced player (in the following Player 2) always played the white
stones, whereas the other (Player 1) played the black ones. As it is common
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in Go to start with black stones, Player 1 had the first move in each match. In
Rengo, both players used white stones. When the maps for both players are
shown simultaneously, the color of an attention map is blue for Player 1 and
purple for Player 2. In Rengo, Player 1 has green fixations, whereas Player 2 has
orange ones.

Visual Analysis

In this section, we demonstrate the effectiveness of our approach. One of the
co-authors, a 2-dan amateur player (advanced amateur), performed the data
analysis. Additionally, we showed our observations to the players and collected
their feedback. We describe the findings from a Rengo game and one of the
competitive matches; a 19 × 19 grid was used for both games.

When exploring the eye movement data, we could detect quite different playing
styles [168] for both players (Q1) and observe their reading process during
games [172]. In several games, we consistently observed an attack-oriented style
for Player 1 and a defense-oriented style for Player 2. Both their thinking process
and intentions differed in such scenarios, which might also be influenced by
their strengths in the game. After we informed the players about our findings
to their playing styles, they both said that it made sense. However, they were
surprised that the eye movement data was able to capture this information. An
example is visible in Figure 3.16 (left). During the Rengo game, the black team
attacked the white stone in the lower left corner. Both players agreed that a
local response was needed but with different strategies (Q1). Player 1 (green
fixations) was in turn and, considered attacking the black stone by pincering
it. Player 2 focused more on a position opposite the black stone to support the
white stone (Q3). This difference in attention would not be that easily visible
without visualization of the synchronized data.

Figure 3.16 (right) shows another situation from the Rengo game during which
the players had different intentions (Q1). Right after the white team had
captured a key black stone in the upper left, the two participants considered
leveraging their newly gained strength to attack nearby black groups. Player 1
(green fixations) explored capturing the black group in the corner, while Player 2
(orange fixations) was considering attacking the black group on the outside, for
which more points could be made.

Another example is visible in Figure 3.15; it shows the joint attention map
during a game where the two participants played each other. The game was at
a crucial stage, with two white stones being the center of a fight. Both players
have their attention around the same place. However, Player 1 (black) looks at
the two white stones (blue hotspot) and is ready to capture them and end the
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Figure 3.16 — Rengo game. Left: After the opposing team approached the
white stone at the lower-left corner, the data on the eye movement of the two
participants showed their different responses. Right: After strengthening their
group that contained the stone with an inscribed black circle, both participants
planned an attack. Their gaze reveals that they were focusing on different
targets.

game. However, it was the turn of Player 2, whose attention (purple hotspot)
was fixed on the grid above, which was the only escape route for his two stones.
It is visible that Player 1 also thinks about a possible next move as if it were his
turn and not about a possible response of Player 2 (who actually is in turn) to
his previous move (Q2, Q3).

Additionally, we noticed in most matches that the attention maps for the entire
match (or larger time spans) showed that Player 1 looked at broader areas
of the board while Player 2 focused more on specific regions (Q1, Q2). For
example, in the competitive matches Player 2 mainly focused on the bottom
right part of the board. While Player 1 also focused on this region, his gaze was
generally more spread and toward the top of the board. In the Rengo game, the
difference between this focus was also visible. Especially at the beginning of
the match, both participants focused on different areas, and only later the areas
they focused on became quite similar.

Exploring the gaze plots of the players revealed further patterns in the focus
of the players (Q1, Q3). For example, at one point during the Rengo game
(Figure 3.14), it was the turn of Player 2. While he was carefully considering
how to proceed with the local fight (focused gaze indicated by the sole orange
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Figure 3.17 — Player 2 (white) played the stone (purple hotspot) to win the
game and his focus remains on this position on the board. Player 1 looks at
the resign button (blue hotspot on the top) and the dialog that appears after
pressing the button (blue hotspot in the center).

circle in the middle of the board), Player 1 (on the same team but out of turn)
was also examining the local situation. However, his gazes at the upper-left
corner of the board sandwiched a quick glance at one of the opposing player’s
icons on the right side of the interface (green fixations). This quick attention
change was probably due to two factors: Player 1 was not in turn, so there
was less pressure on him. Player 1 laughed when we showed him that we
recorded him looking at the opponent’s icon. He said, he was curious about
people’s KGS names and icons. If they look interesting, he would consider
playing more games with them. With our approach, it is easier to make such
observations because it is possible to study the eye movements of both players
simultaneously and not with two separate recording streams.

We made another interesting observation in the same game (Figure 3.17). Both
players drew the same conclusion from the current situation but with a different
behavior (Q1). Player 2 placed a stone (below the purple hotspot) to get his
stones back to safety and win the game. Afterward, his eye movement stayed
on this spot, and he looked nowhere else because the game was over. At the
same time, Player 1 (blue hotspot) looked at the resign button and the dialog
that appeared after pressing the button. Despite the relatively large distance
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between the areas of attention of both players, their conclusions regarding the
game were the same.

Finally, we noticed that both players have the habit of controlling their own and
the opponents’ remaining time by looking at the control panel; this may look
like they are not paying attention.

General Observations

In the analysis, we mainly focused on gaze plots and attention maps. It was
easier to keep track of them as they were shown on the board, and it was
possible to monitor the game situation simultaneously.

We experienced that gaze plots are more effective than attention maps for this
use case because the former shows the exact grid points that have been focused
on and the sequence in which these grid points were gazed at. For example,
in Figure 3.14 on page 87, the gazes of Player 1 shifted from the board to an
opponent’s icon and back. The attention map can show the two areas the player
focused on but does not reveal the back-and-forth shift in his focus.

In contrast, the attention maps appear to be more stable as they were time-
averaged. Moreover, they can provide a better summary for multiple gaze
positions than the gaze plots. For example, in Figure 3.18, the attention of
Player 1 had spread over six different parts of the board and interface, including
checking the remaining time for his team. Such information would be difficult
to find from the gaze plots that we are using to see the current eye movement
of both participants, and the number of fixations is thus limited.

When studying the attention maps for the entire duration of a match, we
noticed for one of the 19 × 19 competitive matches that attention maps cover
grid points that were eventually occupied. This shows that places the players
considered as a possible next move eventually became the next move (Q2).
Another observation is that places where heavy local fights occurred, tend
to be covered by the attention maps. As mentioned before, we also detected
differences between the players and the focused areas (Q1). We hypothesize
that professional players could use such maps to spot blind spots of amateur
players.

The distance plots were also helpful in the analysis. At the beginning of the
game, when the board is relatively open, the players’ choices of a next move
are largely dependent on their level and style (Q1); this is when their attention
diverges the most (see Figure 3.13 on page 86: first, the gray areas indicate that
the players are not yet ready; then, light yellow areas dominate as players look
at different board areas). However, in the middle and end of games, players
are engaged in local fights that attract their attention to the same parts of the
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Figure 3.18 — After the two players were engaged in a semeai (Go term for
a capture race), the fight resulted in a seki (both groups live). Both players
recognized this outcome and immediately shifted their focus to other parts of
the board.

board. In such cases, we can see areas in the distance plot that indicate that the
gaze positions of both players are close together (see Figure 3.13: larger orange
areas show positions of common attention). Of course, when a local fight is
settled, the players are open to deciding where the next move is; thus, styles set
in again with diverging gazes (Q1, light yellow). We believe this feature could
be used in more extensive studies to quickly find areas of local fights or areas
when players are distracted by the chat area or not looking at the screen at all
and to explore the duration of such events.

It was essential for the analysis to see when mouse clicks were used to place
new stones. The event timeline can also provide a sense of how quickly a player
responds when it becomes his turn. For instance, players might think more
when the game is in a complicated situation. Overall, Player 1 spends less time
between moves than Player 2.

When we showed the recordings to the players, they liked the attention maps
and gaze plots the best. After understanding the distance plots, they were
interested in the Rengo game and wanted to know how much they agreed with
each other. Player 2 also wanted to find out where and why they disagreed and
hypothesized that they were different because he was stronger.
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Some of the patterns we found can also be seen from the placement of stones.
However, if we analyzed only newly placed stones without gaze information,
it would not be possible to observe whether players explored the same or
different regions of the board, thought about their own next moves or the ones
of the opponent, explored a broader area of the board or focused on small
regions and would play alike or differently, if it was the other player’s turn (Q1–
Q3). Especially in collaborative games, we see a high value of the additional
information from eye movements as only the moves of one player are visible by
the appearance of new stones and not what the intention of the other player
might have been (Q1, Q3).

3.2.5 Conclusion and Future Work

We presented ETFuse, a new approach for the combined visual analysis of eye
movement data from two players in virtual board games. Data recorded with
two independent eye tracking systems can be automatically mapped to the same
board area and temporally synchronized to compare both players visually. The
mapped and synchronized data can be visually analyzed based on mouse clicks
and custom events using a distance plot, which provides a temporal summary
of the distance between players’ gaze positions, attention maps showing the
overall or time-constrained attention, and gaze plots of specific time periods
for both players. Our use case demonstrated that different strategies of the two
players could be extracted. Such intense and contrasted focus by two players
would be more difficult to observe without using a synchronized visualization
approach.

To this point, we focused on analyzing two players with a common board to
which we map the gaze of both players. An extension for multiple players and
more complex competitive multi-player games such as real-time strategy or
3D games would be possible. While we used data collected from two amateur
players, recordings from more players with different experiences would allow
an analyst to compare the players’ strategies for different games.
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3.3 Summary and Conclusion

This chapter presented two visual analysis approaches for temporal data from
eye tracking. The first approach focuses on the possibility of changing pa-
rameter settings during the interactive filtering for microsaccades. Different
visualizations for analyzing eye movements, especially microsaccades for one
or multiple people, are provided. The second approach, instead, focuses on the
analysis of the eye movements of two people playing an online board game. For
a comparison of their eye movements, the data originating from two different
recording setups must be merged. Given the possibility of joining data from
different hardware, our approach is very flexible in its usage.

The approaches presented here deal with RQ1 and RQ2: the visual analysis of
sequential data and the influence of parameter settings on the analysis. Both pre-
sented approaches benefit from the flexible use of different visualizations (RQ1)
that makes it easy to focus on specific parts of the data and support a compari-
son between different temporal areas. Additionally, for filtering eye movements,
parameters have to be defined for the algorithm that detects them (RQ2). Only
well-chosen values detect eye movements appropriately. In our research, we
noticed that different research papers use different values and algorithms. This
makes it challenging to compare analysis results. With our visual analysis
system, we explored the strong influence of these values on the number, size,
and quality of detected movements. If the movements are not correctly detected,
this affects the whole analysis, including the visualizations presented and the
conclusions that can be drawn. The same applies if the synchronization of the
two eye tracking recordings cannot be performed well. Additionally, parameter
settings have, for example, an impact on the visualizations when deciding
the size of bins or intervals when aggregating or averaging some data. For
example, if the bin sizes are too large or too small, important information may
be missed or larger patterns might not be visible. This could be observed in
both approaches.



C
h

a
p

t
e

r 4
Visual Analysis of Deep Learning

with Sequential Aspects

The previous chapter focused on the visual analysis of temporal eye tracking
data. This chapter addresses DL models where sequential aspects are crucial.
Two visual analysis approaches are presented that contribute to the research
area of XAI (Section 2.5.3). Both approaches are concerned with the issue of
better understanding NLP prediction models. In the presented techniques, text
sequences are used as input to ML models. The goal of the visual analysis is to
increase the interpretability of the underlying ML mechanisms and to improve
the performance of the predictions. While the first approach of this chapter
(Section 4.1) focuses on NMT, the second one (Section 4.2) deals with VQA.
Information on these two DL approaches can be found in Section 2.5.2. For both
approaches, the input data and prediction mechanisms depend on sequences
and sequential processing of information. A further approach of this thesis with
similar principles and goals (Section 5.1) would also fit here. However, since it
has an additional focus on using dimensionality reduction for visualization, it
was instead placed in the next chapter.

4.1 Neural Machine Translation

In this section, a visual analytics approach for ML-based document translation
(Neural Machine Translation Visualization System (NMTVis)) [15, 19] is pre-
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sented. It helps analyze, understand, and correct results created with NMT
with the help of multiple interactive visualizations.

This section is based on the following publications:

• T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf. Visualization-based
improvement of neural machine translation. Computers & Graphics, 103:45–60, 2022,
doi: 10.1016/j.cag.2021.12.003 [19].

• T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf. Visual-interactive neural
machine translation. In Proceedings of Graphics Interface 2021 (GI 2021), pages 265 – 274.
Canadian Information Processing Society, 2021, doi: 10.20380/GI2021.30 [15].

The images shown in this section were created with the following source code/material:

• T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf. NMTVis - Ex-
tended neural machine translation visualization system. DaRUS, V1, 2022, doi:
10.18419/darus-2124 [18]. (The source code is also available on GitHub: https:
//github.com/MunzT/NMTVis.)

• T. Munz, D. Väth, P. Kuznecov, N. T. Vu, and D. Weiskopf. NMTVis - Trained models
for our visual analytics system. DaRUS, V1, 2021, doi: 10.18419/darus-1850 [17].

Machine translation models (see page 40 in Section 2.5.2) are computationally
efficient and able to translate large documents with low time effort, but they
may create erroneous or inappropriate translations. Humans are very slow
compared to these models, but they can detect and correct mistranslations when
familiar with the languages and the domain terminology. In a visual analytics
system, both of these capabilities can be combined if high-quality translations
for large texts are required. Our system (Figure 4.1, Figure 4.2) performs
automatic translation of a whole, possibly large, document and shows the result
in the document view. Users can then explore and modify the document in
different views [273] to explore and improve translations and use the corrections
to fine-tune the NMT model. We support different NMT architectures and use
both an LSTM-based (page 45 in Section 2.5.2) and a Transformer (page 47
in Section 2.5.2) architecture. In this approach, the sequential component is
present as input and output data (sentences and their translation) and also
during the prediction of a new translation. Here, especially the attention and
the beam search views (see page 112 in Section 4.1.3) visualize sequential
components. These visualizations are strongly linked to the underlying model:
visualized attention weights correlate with the importance of source words for
the translated words, and multiple translation possibilities created by the beam
search decoding are presented to the user.

This approach contributes to RQ1, RQ3, and slightly to RQ2: Multiple interactive
visualizations are provided to explore textual sequences in the context of

https://doi.org/10.1016/j.cag.2021.12.003
https://doi.org/10.20380/GI2021.30
https://doi.org/10.18419/darus-2124
https://github.com/MunzT/NMTVis
https://github.com/MunzT/NMTVis
https://doi.org/10.18419/darus-1850
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Figure 4.1 — The main view of our NMT system: (A) Document view with
sentences of the document for the current filtering settings, (B) metrics view
with sentences of the filtering result highlighted, and (C) keyphrase view with
a set of rare words that may be mistranslated. The document view initially
contains all sentences automatically translated with the NMT model. After
filtering with the metrics view and keyphrase view, a smaller selection of
sentences is shown. Each entry in the document view provides information
about metrics, the correction state, and functionality for modification (on the
right side next to each sentence). The metrics view represents each sentence
as one path and shows values for different metrics (e.g., correlation, coverage
penalty, sentence length). Green paths correspond to sentences of the current
filtering. One sentence is highlighted (yellow) in both the metrics and document
view. This image was created for a document translated with a Transformer
model.

Vis4ML. Both the beam search view and the attention view (graph and matrix-
based; Figure 4.2 B and C) provide visualizations for sequences to gain a
deeper understanding of the mechanisms of the underlying prediction model.
Additionally, the beam search view (Figure 4.2 D) can be used interactively to
explore and change the translation. These visualizations help explore sequences
(RQ1) and internal behaviors of DL (RQ3). Additionally, this approach provides
possibilities to change parameters for the visualized information (RQ2). An
example is the number of alternative translations being shown in the beam
search view. Depending on the selected beam size, a varying number of
translations with different suitability are suggested.

This work contributes to visualization research by introducing the application
domain of NMT using a user-oriented visual analytics approach. Our system
employs different visualization techniques adapted for usage with NMT and is
therefore derived from various existing approaches. We combined individual
components of these approaches and adapted them to our needs; a concept
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Figure 4.2 — The detailed view for a selected sentence consists of the sen-
tence view (A), the graph-based attention view (B), the matrix-based attention
view (C), and the beam search view (D). The sentence view allows text-based
modifications of the translation. The attention views show the attention weights
for the translation between source words and translated words. The graph-based
visualization represents attention values by the lines connecting source words
with their translation. The matrix-based visualizations show the corresponding
values by coloring the corresponding grid cells between source words and their
translation. The beam search view provides an interactive visualization that
shows different translation possibilities and allows exploration and correction
of the translation. All four areas are linked. On the bottom, users can change
some parameters for the visualizations and the models. This image was created
from a sentence translated by an LSTM model.

mentioned in Section 2.3. We added new interaction techniques to some visual-
izations for NMT in this context. Our parallel coordinates plot (Figure 4.1 B)
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supports the visualization of different metrics related to text quality. The inter-
action techniques in our graph- and matrix-based visualizations for attention
(Figure 4.2 B and C) and tree-based visualization for beam search (Figure 4.2 D)
are specifically designed for text exploration and modification. They have a
strong coupling to the underlying model. Additionally, we enable the use of
subword units and differentiate between them and whole words in the beam
search visualization and matrix-based attention view. Our workflow is not
limited to only exploring and debugging NMT models with visualizations; it
can be used for the whole translation process of documents. Even adapting the
NMT model to the current vocabulary is possible. Our system is developed
generically for NMT models, and we used it with an LSTM-based and a Trans-
former model. We publicly provide the source code [18] of our system and
the trained models [17] we used in our evaluation. This work expands on the
master’s thesis of Paul Kuznecov [196].

4.1.1 Related Work

This section first discusses the visualization, visual analytics, and interaction
approaches for language translation in general and then visual analytics of DL
for text. Afterward, we provide an overview of work that combines both areas
in the context of NMT.

Many visualization techniques and visual analytics systems exist for text; see
Kucher and Kerren [189] for an overview. However, there is little work on
exploring and modifying translation results. An interactive system to explore
and correct translations was introduced by Albrecht et al. [34]. While the trans-
lation was created by machine translation, their system did not use DL. Lattice
structures with uncertainty visualization were employed by Collins et al. [92] in
the context of machine translation. They created a lattice structure from beam
search where the path for the best translation result is highlighted and can be
corrected. We also use visualization for beam search, but ours is based on a tree
structure. Without the use of visualization, Green et al. [136] follow a similar
approach to ours to let users correct machine-translated sentences providing
suggestions. They discuss that post-editing of mistranslated sentences reduces
time and creates results with better quality [136, 137].

Recently, much research was done to visualize DL models to understand them
better (see Section 2.5.3). It is noticeable that not much work exists related to
text-based domains. One of the examples is RNNVis [228], a visual analytics
system designed to understand and compare models for NLP by considering
hidden state units. Karpathy et al. [178] explore the prediction of LSTM models
by visualizing activations on text. Heatmaps are used by Hermann et al. [148]
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in order to visualize attention for machine-reading tasks. To explore the training
process and to better understand how the network is learning, RNNbow [78]
can be used to visualize the gradient flow during backpropagation training in
RNNs.

While the previous systems support the analysis of DL models for text domains
in general, approaches exist to specifically explore and understand NMT. The
first who introduced visualizations for attention were Bahdanau et al. [46].
Using an attention weight matrix, they showed the contribution of source words
to translated words within a sentence. We also include an interactive version
of such a visualization. Later, Rikters et al. [272] introduced multiple ways to
visualize attention and implemented exploration of a whole document. They
visualize attention weights with a matrix and a graph-based visualization con-
necting source words and translated words by lines whose thickness represents
the attention weight. Bar charts give an overview of a whole document for
multiple attention-based metrics that are supposed to correlate with the trans-
lation quality. Interactive ordering of these metrics and sentence selection is
possible. However, it is difficult for large documents to compare the different
metrics as each bar chart is horizontally too large to be entirely shown on a
display. The only connection between different bar charts is that the bars for
the currently selected sentence are highlighted. Our system also uses such a
metrics approach, but instead of relying on bar charts, a parallel coordinates
plot was chosen for better scalability, interaction, and filtering. Additionally, we
performed a computer-based evaluation for our chosen metrics.

An interactive visualization approach for beam search is provided by Lee
et al. [202]. The interaction techniques supported by their tree structure are
quite limited. It is possible to expand the structure and change attention weights.
However, it is not possible to add unknown words, and no subword units are
considered. Furthermore, the exploration is limited to single sentences instead
of a whole document. In our approach, we deal with these limitations.

With LSTMVis, Strobelt et al. [300] introduced a system to explore LSTM
networks by showing hidden state dynamics. Among other application areas,
their approach is also suitable for NMT. While our approach is intended for
end-users, LSTMVis aims to debug models by researchers and ML developers.
With Seq2Seq-Vis, Strobelt et al. [301] present a system that uses a graph-
based attention view similar to ours and provides an interactive beam search
visualization. However, their system is designed to translate single sentences,
and no model adaption is possible for improved translation quality. Their
system aims to debug and gain insight into the models.
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Since different architectures are available for generating translations [344],
specific visualization approaches may be required. Often, LSTM-based archi-
tectures are used. Another more recent architecture is the Transformer [322].
Vig [326, 327] visually explores its self-attention layers, and Rikters [271] ex-
tended their previous approach for debugging documents to Transformer-based
systems.

All these systems provide different, possibly interactive, visualizations. How-
ever, their goal is to debug NMT models instead of supporting users in trans-
lating entire documents, or they are limited to small aspects of the model.
Additionally, they are usually designed for one specific translation model. None
of these approaches provide extended interaction techniques for beam search or
interactive approaches to iteratively improve the translation quality of a whole
document.

4.1.2 Requirements and Design

Our approach is strongly linked to machine data processing and follows the
visual analytics process presented by Keim et al. [182]. We use visualizations
for different aspects of NMT models, and users can interact with the provided
information.

Requirements

We followed the nested model by Munzner [231] to develop our system. The
main focus was on the outer parts of the model, including identifying domain
issues, feature implementation design, and visualization and interaction im-
plementation. Additionally, we used a similar process as Sedlmair et al. [281],
mainly focusing on the core phases. Design decisions were made in close coop-
eration with DL and NMT experts, who are also co-authors of the publications
related to this work [15, 19]. The visual analytics system was implemented
in a formative process involving these experts. Our system went through an
iterative development that included multiple meetings with our domain experts.
Together, we identified the requirements listed in Table 4.1. After implementing
the basic prototype of the system, we demonstrated it to further domain experts.
At a later stage, we performed a small user study with experts for visualization
and machine translation. For our current prototype, we added the functionality
recommended by these experts. Refer to Section 2.6 for more details on how we
derived the requirements.
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Table 4.1 — Requirements for our visual analytics system and their implemen-
tations in our approach.

R1 Automatic translation – A document is translated automatically by an
NMT model.

R2 Overview – The user can see the whole document as a list of all source
sentences and their translations (Figure 4.1 A). Additionally, the metrics
view provides an overview of the translation quality, revealing statistics
about different metrics encoded as a parallel coordinates plot (Figure 4.1
B) showing an overall quality distribution.

R3 Find, filter, and select relevant sentences – Interaction in the parallel
coordinates allows filtering according to different metrics and selecting
specific sentences. It is also possible to select one sentence and order the
other sentences of the document by similarity to verify for similar
sentences if they contain similar errors. Additionally, our keyphrase view
(Figure 4.1 C) supports selecting sentences containing specific keywords
that might be domain-specific and rarely used in general documents.

R4 Visualize and modify sentences – For each sentence, a beam search and
two attention visualizations (Figure 4.2) can be used to interactively
explore and adapt the translation result in order to correct erroneous
sentences and explore how a translation failed. It is also possible to
explore alternative translations.

R5 Update model and translation – The model can be fine-tuned using the
user inputs from translation corrections. This is especially useful for
domain adaption. Afterward, the document is retranslated with the
updated model to improve the translation result (Figure 4.5 on page 108).

R6 Generalizability and extensibility – While we initially designed our
visualization system for one translation model, we soon noticed that our
approach should handle data from other translation models as well.
Therefore, our approach should be easily adaptable for new models to
cope with the dynamic development of new DL architectures. Our
general translation and correction process is quite agnostic to be applied
to various models. Model-specific visualizations may have limitations and
must be adapted or exchanged using a different translation architecture.

R7 Target group – The target group for our system should be quite broad
and include professional translators or students who need to translate
documents. However, it should also be able to be used by other people
interested in correcting and possibly better understanding the results of
automated translation.
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Neural Machine Translation

Machine translation (see page 40 in Section 2.5.2) aims to translate a sequence
of words from a source language into a sequence of words in a target language.
Usually, NNs for machine translation are based on an encoder-decoder archi-
tecture (see page 46). The decoder generates an output sequence where each
element is used to generate a probability distribution over the target vocabulary.
These probabilities are then used to determine the target sequence. A common
method to achieve this uses beam search decoding [135].

Although different NMT models vary in their architecture, the previously men-
tioned encoder-decoder design should apply to a wide range of architectures
and new approaches that may be developed in the future (R6). In this work, we
explored an LSTM architecture with attention and extended our approach to
include the Transformer architecture, thus verifying its ability to generalize (see
page 45 in Section 2.5.2 for details on these models).

The attention mechanism for NMT [46] was introduced to handle long sentences.
It allows Seq2Seq models to pay attention to different sections of the input
sequence while predicting the next item of the output sequence by providing the
decoder access to the encoder’s weighted hidden states. The attention weights
can be easily visualized and used to explain why an NN model predicted
a specific output. Furthermore, the attention weights can be seen as a soft
alignment between source and target sequences. For each translated word, the
weight distribution over the source sequence indicates which source words were
most relevant for predicting that target word.

The Transformer architecture was introduced by Vaswani et al. [322]. It uses
a more complex attention mechanism with multi-head attention layers. Self-
attention plays a vital role in the translation process. We verify its applicability
to our approach and visualize only the part of the attention information that
showed an alignment between source and target sentences comparable to the
LSTM model.

4.1.3 Visual Analytics Approach

Our visual analytics approach NMTVis allows the automatic translation, explo-
ration, and correction of documents. Its components can be split into multiple
parts: (1) A document is automatically translated from one language into an-
other one. (2) Users identify mistranslated sentences in the document. (3) The
users can explore and correct individual sentences. (4) The model can be fine-
tuned, and the document can be retranslated. This workflow is also shown in
Figure 4.3.
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Document upload

Automatic translation

Find and filter relevant sentences

Visualize and modify translations

Fine-tune model

Retranslate document

Figure 4.3 — Workflow of our system: First,
a document is uploaded to our system and au-
tomatically translated. Next, sentences can be
filtered and selected for visualization and mod-
ification. Finally, the model can be fine-tuned,
and the document can be retranslated. The last
steps can be repeated multiple times until the
translation quality is sufficient.

Exploration of Documents

After uploading a document to our system, it is translated by an NMT
model (R1). The main view of our approach then shows information about the
whole document (R2). This includes a list of all sentences in the document
view (Figure 4.1 A) and an overview of the translation quality in the metrics
view (Figure 4.1 B). Using the metrics view and keyphrase view (Figure 4.1 C),
sentences can be filtered to detect possible mistranslated sentences that can
be flagged by the user (R3). Once a mistranslated sentence is found, it is also
possible to filter for sentences containing similar errors (R3).

Metrics View In the metrics view, a parallel coordinates plot (Figure 4.1 B) is
used to detect possible mistranslated sentences by filtering sentences according
to different metrics (R3). For instance, it is possible to find sentences with low
translation confidence.

Multiple metrics exist that are relevant to identify translations with low quality.
We use the following metrics in our approach:

• Confidence: A metric that considers attention distribution for input and
output tokens suggested by Rikters et al. [272]. Here, a higher value is
usually better.

• Coverage penalty: This metric by Wu et al. [343] can be used to detect
sentences where words did not get enough attention. Here, a lower value
is usually better.

• Sentence length: The sentence length (the number of words in a source
sentence) can be used to filter very short or long sentences. For example,
long sentences might be more likely to contain errors.
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• Keyphrases: This metric can be used to filter for sentences containing
domain-specific words. As these words are rare in the training data, the
initial translation of sentences containing them is likely erroneous. The
values used for this metric are the number of occurrences of keyphrases
in a sentence weighted by the frequency of the keyphrases in the whole
document.

• Sentence similarity: Optionally, for a given sentence, the similarity to all
other sentences can be determined using cosine similarity. This helps find
sentences with similar errors to a detected mistranslated sentence.

• Document index: The document index allows the user to sort sentences
according to their original order in the document, which can be especially
important for correcting translations where the context of sentences is
relevant. Furthermore, this metric might also show trends like consecutive
sentences with low confidence.

In contrast to Rikters et al. [272], who use bar charts to visualize different
metrics, we chose a parallel coordinates plot [166]. Each sentence can be
mapped to one line in such a plot, and different metrics can be easily compared.
Such a plot is useful for an overview of different metrics and detecting outliers
and trends. Interactions with the metrics, such as highlighting lines or choosing
filtering ranges, are supported. It can be expected that sentences filtered for
both low confidence and high coverage penalty are more likely to be poorly
translated than sentences falling into only one of these categories.

Keyphrase View It is possible to search for sentences according to keyphrases
by selecting them in the keyphrase view (Figure 4.1 C) (R3). The results can be
visualized as shown in Figure 4.4. Keyphrases are domain-specific words. Since
we trained our model on general data, they were not often included in our
model’s training data. As the model does not have enough knowledge on how
to deal with these words, it is important to verify if the respective sentences
were translated correctly. In addition to automatically determined keyphrases,
users can manually specify further keyphrases for sentence filtering.

Document View A list of all the source sentences in a document and a list of
their translations are shown in the document view (Figure 4.1 A) (R2). Each entry
in this list can be marked as correct or flagged (Figure 4.4) for later correction.
A small histogram shows an overview of the previously mentioned metrics.
If a sentence is modified, either through user correction or retranslation by
the fine-tuned model, changes in the sentences are highlighted (Figure 4.5).
Both the metrics view and the keyphrase view are connected via brushing and
linking [332] to allow filtering for sentences that are likely to be mistranslated
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Figure 4.4 — Main view of the system: The document view shows some
sentences flagged for correction. Additionally, the keyphrase filter (top right)
is active: The metrics and document views show all sentences containing the
keyphrase “KIs.” Here, “KIs” is never correctly translated to “AIs.” This image
was created from a document translated by a Transformer model.

Figure 4.5 — Document view showing user corrected translations by high-
lighting changes to the initial machine-generated translations. This image was
created for a document translated with a Transformer model.

and should be examined and possibly corrected. Additionally, sentences can
be sorted into a list by similarity to a user-selected reference sentence. In this
list, sentences can be selected for further exploration and correction in more
detailed sentence-based views.
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Exploration and Correction of Sentences

After filtering and selection, a sentence can be further analyzed with the
sentence, attention, and beam search views (Figure 4.2) and subsequently
corrected (R4). These views are shown simultaneously to allow interactive
exploration and modification of translations.

Note, on the sentence level, we use subword units to handle the problem of
rare words, which often occur in domain-specific documents, and to avoid
unknown words. We use the byte pair encoding (BPE) method proposed by
Sennrich et al. [284] for compressing text by recursively joining frequent pairs
of characters into new subwords. This means that instead of using whole words
to build the source and target vocabulary, words are split into subword units
consisting of possibly multiple characters. This method reduces model size,
complexity, and training time. The model can also handle unknown words
by splitting them into subword units. As these subword units are known
beforehand, they do not require the introduction of an “unknown” token for
translation. Thus, we can adapt the NMT model to any new domain, including
those with vocabulary not seen at training time.

Sentence View Similar to common translation systems, the sentence view
(Figure 4.2 A) shows the source sentence and the current translation. It is
possible to manually modify the translation, which in turn updates the content
in the other sentence-based views. After adding a new word in the text area,
the translation with the highest score is used for the remainder of the sentence.
This supports a quick text-based modification of a translation without explicit
use of visualizations. Currently, changing the translation updates the whole
sentence after the modified word. Therefore, we do not support deleting or
changing words while maintaining the remainder of a sentence.

Attention View The attention view depends on the underlying NMT model. It
is intended to visualize the relationship between words of the source sentence
and the current translation as a weighted graph (Figure 4.2 B). Such a technique
was also used by Strobelt et al. [301]. Both source and translated words are
represented by nodes. Links between such words show the attention weights
encoded by the thickness of the connecting lines (we use a predefined threshold
that users can adapt to hide lines for very low attention). These weights correlate
with the importance of source words for the translated words. Hovering over a
source word highlights connecting lines to translated words starting at this word.
In addition, the translated words are highlighted by transparency according
to the attention weights (Figure 4.6 top). While this indicates how a source
word contributes to the translation, it is also possible to show for translated
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Figure 4.6 — Graph-based attention visualization: (top) when hovering a source
word (here: “schwer”), translated words influenced by the source are high-
lighted and (bottom) when hovering a translated word (here: “difficult”), source
words that influence the translation are highlighted according to attention
weights. These images were created from a sentence translated by an LSTM
model.

words how source words contribute to the translation (Figure 4.6 bottom).
This interactive visualization supports users in understanding how translations
are generated from the source sentence words. On the one hand, such a
visualization helps gain insight into the NMT model, and on the other hand, it
helps detect issues in generated translations. The links between source sentences
and their translation can be explored to identify anomalies such as under- or
over-translation. Missing attention weights can indicate under-translation and
links to multiple translated words for over-translation. Section 4.1.4 contains
some examples of such problems.

As an alternative, we introduce an interactive matrix-based visualization (Fig-
ure 4.2 C). By default, this visualization is not shown due to the limited space
on a typical screen, but it can be optionally activated. Visualizing attention
weights using a matrix is a common approach initially introduced by Bahdanau
et al. [46]. Based on this technique, our implementation is additionally interac-
tive and specifically designed to handle subword units. At the top, the source
sentence is presented, and the translation is on the left. The cells show the
attention values between the source and translation using a color gradient for
the strength of the attention (this correlates to the thickness of lines between
words in our graph-based presentation of the attention). We also added special
handling for subwords to differentiate them from whole words: horizontal and
vertical lines separate all words in the sentences. If there is no line between cells,
they represent subwords of the same word. When hovering over a source or
target word, the respective words in the other language are highlighted. When
hovering over a cell, the words with the largest attention values between the
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respective translated word and source word are highlighted for both the source
sentence and the translation. This view is linked to the graph-based attention
visualization.

We decided to include both visualizations in our system as each has advantages
and disadvantages. While the graph-based visualization is vertically compact,
long sentences can be challenging to represent on a screen, and often, users
have to scroll horizontally. Additionally, there might be some overplotting lines
between the source and the translation in the graph-based visualization since
there is much less space between the source words and the translation. This
makes it challenging to identify where connections start and end, making it
difficult to evaluate the attention properly. Despite this, the interactivity and
the highlighting of connections enable important information to be explored
well. However, providing a general overview of the attention values may be
insufficient, especially when dealing with long sentences or when the word
order in both languages is very different. For small sentences, this representation
works very well. In contrast, the matrix visualization needs less horizontal space
(since source words can be drawn vertically). Yet, it requires much more vertical
space (usually, it has about the same height and width). Therefore, the general
size of the visualization is much larger, and it can be hard to fit on screen for
large sentences. However, the attention values can be more easily perceived
from the matrix visualization, especially when exploring long sentences. Each
attention value is allocated to one cell, and there is no overplotting. Users
can inspect the attention in this alternative visualization if the graph-based
visualization suffers from too much overplotting by providing the option to
switch to the matrix visualization.

As previously mentioned, for the graph-based visualizations, we do not draw
all attention connections between source words and their translations when
their values are too small. If we added connections for very small attention
values, it would be challenging to detect larger attentions due to overplotting
(see Figure 4.7 top). Setting a threshold to ignore smaller values helps users
identify strong relationships between source and translation words (compare
Figure 4.2 (B) and Figure 4.6). When hovering over a word in a visualization
that shows all connections (Figure 4.7 bottom), individual attention values of the
respective word are still well recognizable. In the user interface, it is possible to
change this threshold interactively. This threshold is unnecessary for the matrix
visualization since no overplotting problem exists. It would also be possible to
add it here to see larger attention values more quickly. However, since each
attention value is shown in an individual cell, we decided against this. This
allows users to see the whole attention at a glance.
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Figure 4.7 — Graph-based attention visualization with adapted threshold setting
for connecting lines. Top: Connections show the attention values between all
source and translated words. Even for very small attention values, a connection
is drawn. This visualization suffers from overplotting. Bottom: Only the
corresponding connections are highlighted when hovering over a source word,
showing the corresponding attention distribution to all translated words. These
images were created from a sentence translated by an LSTM model.

While these techniques specifically employ information of the attention-based
LSTM model, we use it in an adapted form for the Transformer architecture (see
page 122 in Section 4.1.4). A visualization more tailored to Transformers, also
including self-attention could provide additional information. Further models
may need different visualizations to generalize our approach, employing model-
specific information.

Since the Transformer model has multiple attention layers, it is not apparent
which layer should be presented to the user. Our experiments showed that the
second to last layer usually showed the best correlation between the source
sentences and their translations. Therefore, we select this as the default layer.
However, suppose a user is more interested in the behavior of the Transformer
model, it is also possible to switch between the different layers to compare
the attention distributions and the resulting translations. Figure 4.8 shows the
attention values for different layers.

Beam Search View While the attention views can identify positions with
mistranslations, the beam search view supports users in interactively modify-
ing and correcting translations. The beam search view visualizes multiple
translations created by the beam search decoding as a hierarchical structure
(see Figure 4.2 D). This interactive visualization can be used to post-edit the
translations.

The simplest way of predicting a target sequence is greedy decoding. In
each time step, the token with the highest output probability is chosen as the
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Layer 0 Layer 4 Average

Figure 4.8 — Visualization of the attention of different layers (layers zero,
four, and the average of all layers) from the Transformer model. Users can
switch between these visualizations. Here, especially the last source word has
rather large attention values to almost all translated words. We noticed in our
experiments that layer four shows the best alignment between source words and
their actual translations. These images were created from a sentence translated
by the Transformer model.

next predicted token and fed to the decoder in the following step. This is an
efficient and simple way to generate an output sequence. However, another
translation may be better overall despite having lower probabilities for the first
words. Beam search decoding [135] is a tradeoff between exhaustive search and
greedy decoding, often used for generating the final translation. A predefined
number (k) of hypotheses is considered at each time step. For each hypothesis,
the NMT model outputs a probability distribution over the target vocabulary
for the next token. The probability of the final token sorts these hypotheses,
and up to k hypotheses remain in the beam. Hypotheses that end with the end-
of-sequence (EOS) token are selected to build the result set. Once k hypotheses
stay in the result set, the algorithm stops, and the final hypotheses are ranked
according to a score function that depends on attention weights and sentence
length.

For visualization, we use a similar approach as Strobelt et al. [301] and Lee
et al. [202]: a tree structure reflects the inherently hierarchical nature of the
beam search decoding. This way, translation hypotheses starting with the same
prefixes are merged into one branch of this hierarchical structure. The root
node of each translation is associated with a start-of-sequence (SOS) token, and
all leaf nodes with an EOS token. Compared to the visualization of a list of
different suggested translations, showing a tree is more compact. Additionally,
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it is easier to recognize where commonalities of different translation variants
lie.

Each translation term is visualized by a circle representing the node and a
corresponding label. The color of a circle is mapped to the word’s output
probability. This helps users identify areas with a lower probability that might
require further exploration. It can be seen as uncertainty for the prediction
of words. In our visualization, we differentiate between nodes representing
subwords and whole words. Continuous lines connect subwords, and nodes
are placed closer together to form a unit. In contrast, the connections to whole
words are represented by dashed lines.

Our beam search visualization can be used to navigate within a translation and
edit it. The interaction can be realized with mouse or keyboard input. The
latter method is more efficient for fast post-editing. The view supports standard
panning-and-zooming techniques that are especially needed to explore long
sentences as they do not fit common displays. For navigation within the tree,
arrow keys can be used to move through a sentence, or the mouse cursor can
select nodes. If the translation of the current node’s child node is not satisfying,
the node can be expanded to show some suggestions for correction. If the user
selects a suggested word, the beam search runs with a lexical prefix constraint,
and our tree structure gets updated. If the suggested words are unsuitable,
a custom correction can be performed by typing an arbitrary word that fits
better. The user has no limitations here since we use subword units to build
words. The number of suggested translations is initially set to three and can be
increased by adapting the beam size. Increasing this value may create better
translations and provide more alternative translations (Figure 4.9). However,
the higher the value, the more information the visualization has to show. By
hovering and selecting elements in this view, corresponding elements of the
attention views and sentence view are highlighted for reference.

Model Fine-tuning and Retranslation

After correcting the translation of multiple sentences, the user corrections can
be used to fine-tune the NMT model and automatically improve the translation
of the not yet verified sentences (R5). This approach can be applied repeatedly
to improve the document’s translation quality, especially for domain-specific
texts.

Documents often belong to a specific domain, such as legal, medical, or scientific.
Each domain uses a specific vocabulary; the same word can even mean different
things in different domains. Therefore, the capability of NMT models to handle
different types of domains is very important. Domain adaptation means that
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Figure 4.9 — Beam search view with increased beam size. Beam search decoding
created ten possible translations, and the beam search representation shows
them as a tree to see the similarities between them better. This image was
created from a sentence translated by the Transformer model.

NMT models trained on general training data (out-of-domain) can adapt to
domain-specific documents (in-domain). This is useful because there is a
large amount of general training data, but domain-specific data is rare. Since
NMT models require a considerable amount of training data to achieve good
translation quality, the out-of-domain data can be used to train a baseline model.
The model can be fine-tuned using in-domain data (R5), which usually contains
a small number of sentences: we use the user-corrected sentences in our system.
This mitigates the problem of training an NMT model where not much data
exists for a particular domain. In our approach, we continue training for the
in-domain data in a reduced way by freezing certain model weights (for the
LSTM-based model, both the decoder and the LSTM layers of the encoder are
trained. For the Transformer, only the decoder is trained).

Implementation

NMTVis is implemented as a client-server application. The interactive interface
can be shown in a web browser. The client is implemented in TypeScript [58]
and runs on the Angular [171] framework. The backend was implemented with
Python 3 [321] and the Flask [139] framework. The NMT models are imple-
mented in PyTorch [249], and tokenization of sentences uses Spacy [159]. We
apply BPE [284] to the inputs, and the model output is also in BPE vocabulary
space. The visualizations are generated with D3.js [65]. The tree layout for the
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beam search visualization uses the Reingold-Tilford algorithm [267] implemen-
tation in D3.js. Translation quality is evaluated using the sacrebleu [255] library
and the Natural Language Toolkit (NLTK) [59].

4.1.4 Evaluation

We evaluate our visual analysis approach from different perspectives using
different types of evaluation (see Section 2.7). First, we demonstrate a use case
where we automatically translate an article and use the features of our system to
enhance the translation quality. Next, we report on the findings of a preliminary
user study conducted during the development of our approach. The goal was
to evaluate the effectiveness of our concept, using a prototype with an LSTM
translation model. In addition, we conducted computer-based experiments to
confirm the correlation between our metrics and the translation quality, using
both the LSTM and Transformer architectures.

Neural Machine Translation Models

We trained our NMT models on a general dataset: the German-to-English
(DE-EN) dataset from the 2016 ACL Conference on Machine Translation
(WMT’16) [62] shared news translation task, containing approximately 4.5
million sentence pairs. This is a popular dataset for NMT, used, for instance,
by Denkowski and Neubig [102] and Sennrich et al. [285]. In our LSTM-based
setup, we used two bidirectional LSTM layers in both encoder and decoder,
with hidden size 256 and dropout of 10%. With a batch size of 256, the model
(63,219,793 parameters) was fully trained after ∼ 16 hours on a single Nvidia
GTX 3090.

The configuration used for the Transformer follows the small configuration from
Vaswani et al. [322] and consists of 6 Transformer layers. A single Transformer
layer comprises a feed-forward layer and a self-attention mechanism. Self-
attention uses eight heads; linear layers have a size of 2048. A dropout of 10%
was used throughout the model. Training the Transformer model (98,167,889
parameters) with variable batch size (maximum of 16384 tokens) took ∼ 2 days
and 3 hours on a single Nvidia GTX 3090.

We used the bilingual evaluation understudy (BLEU) metric [246] for evaluation.
It is a standard evaluation metric in machine translation based on n-gram
precision. For each source sentence, a candidate translation from the model is
evaluated against a list of reference translations, e.g., translations of multiple
human translators.
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Table 4.2 — BLEU scores of our models for DE-EN and EN-DE translation on
the WMT’16 test sets.

DE-EN EN-DE

LSTM 26.95 23.75

Transformer 36.38 33.43

Table 4.2 shows the final performance of our NMT models on the WMT’16
datasets for German-English translation in both directions (English-to-German
(EN-DE) and DE-EN) for both the LSTM-based and the Transformer models.
Since the goal of our work was not to create the best model, there are others [285]
that achieved higher BLEU scores. However, our LSTM model performed
similarly to the one by Luong et al. [212]. Our Transformer implementation
achieved a better BLEU score for EN-DE translations than both the base and
big model by Vaswani et al. [322]. This shows that although there is room
for improvement, our NMT models have performance comparable to related
systems, making them adequate for our use case.

Use Case

As a typical use case, we take the German Wikipedia article for artificial intelli-
gence (Künstliche Intelligenz) [340] as a document for translation into English.
For translation, we used 358 sentences and headings from the article. In the
following, we show how to use our system to improve the translation quality
of the document. The following examples were created with an LSTM and
Transformer model.

Exploration of Documents After uploading a document to our system (R1),
we have a look at the parallel coordinates plot (R2) for our initial translations
and the list of keyphrases in order to detect possible mistranslations (R3). The
domain-specific term “KIs” occurs relatively often in the keyphrase view. This
term is the German abbreviation for “artificial intelligences” and should, there-
fore, be translated as “AIs.” However, none of the translations use the correct
term (Figure 4.4). There were also some keyphrases listed that started with “KI”
(e.g., “KI-Forschung,” en: “AI research”) which were wrongly translated. Since
the term “KI” (en: “AI”) did not appear as a keyphrase, we manually defined it,
noticing that it appeared almost 100 times in the document but was never cor-
rectly translated. Additionally, one could select and verify sentences with low
confidence or a high coverage penalty in the metrics view. Here, we especially
notice the under-translation of some long sentences and the over-translation of
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Figure 4.10 — Example of over-
translation: “History” is placed
twice as a translation for the Ger-
man word “Geschichte.” The beam
search view (right) shows possi-
ble alternative translations. How-
ever, only increasing the beam size
to eight shows the translation we
would have expected (highlighted
in yellow). These images were cre-
ated from a sentence translated by
an LSTM model.

short headings. Additionally, we detected that long sentences often had a low
confidence and relatively high coverage penalty (see the filtering in Figure 4.1).
After verifying a translation in the document view, users can decide if they
are correct (R2). If the users disagree with the translation, they can set a flag
(Figure 4.4) to modify the translation later or switch to the sentence-based views
to correct it (R4).

Exploration and Correction of Sentences After setting flags for multiple
sentences (Figure 4.4) or the decision to explore or modify a sentence, a more
detailed view for each sentence can be shown to analyze and improve their
translations interactively (Figure 4.2) (R4).

Over-translation is a common issue of NMT [183]. In the attention views, it is
possible to see what went wrong by identifying where the attention weights
connect the source and destination words. For both models, we notice some
cases for very short sentences or headings, and for the LSTM model, some
cases with enumerations where commas separate individual words. Figure 4.10
shows for the German heading “Geschichte” (en: “History”), a translation that
uses the translated word multiple times. Also, the suggested alternatives use
this term more than once. The correct translation is visible only after increasing
the beam size to eight, which can then be selected as the correction.

More often, only parts of a sentence are translated, and important words are
not considered in our document. Such under-translation is shown in Figure 4.11.
The German term “Interviewpartner” (en: “interviewee”) is skipped in the
translation. While this part of the translation is missing, the translated sentence
is still correct and fluid. It might be challenging to detect such an error without
such attention visualizations.
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Figure 4.11 — Example of under-translation shown in the attention views: The
term “Interviewpartner” (en: “interviewee”) in the middle of the sentence is not
translated. It can be seen that attention weights are very low for this term. This
is visible in both the graph-based and the matrix-based visualization. These
images were created from a sentence translated by an LSTM model.

It is even possible that sentences are both under- and over-translated. We
found an example where the enumeration of a sentence was not correctly
translated. Some enumerated words were translated multiple times, and others
not at all. The graph-based attention view showed attention from one word
to multiple identical words. Additionally, there were no outgoing connections
from every source word. In the matrix-based visualization, the attention values
for source words appeared in multiple rows repeatedly and with equal attention
strengths.

An example of a wrong translation containing a keyphrase is visualized in
Figure 4.12. Here, it is also shown that it is possible to select an alternative
translation interactively starting from the position where the first error occurs
using the beam search visualization. The beam search provides possible alter-
native translations, but it is possible to manually type what the user believes
should be the next term. Here, we manually enter the correct translation. The
beam search visualization automatically updates in real-time according to the
correction.

Correct translations can also be explored in our approach to investigate the
different sentence structures between different languages. Figure 4.13 shows
two typical examples of correctly translated sentences. While the first sentence
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Wrong
translation
of keyword

User
correction

Suggested
alternatives

New best
translation

User
correction

Figure 4.12 — Example of a mistranslated sentence containing the keyphrase
“KI” shown as beam search visualization. Top: suggested translation, suggested
alternatives, and custom correction. Bottom: updated translation tree for the
corrected keyword with new suggestions for continuing the sentence after the
custom change. These images were created from a sentence translated by the
Transformer model.

has a linear alignment between the source words and their translations, the
second example has a different structure in each language. This is visible in our
graph-based attention view by the presence of intersecting connections. In the
matrix visualization, the same can be seen when most cells along the diagonal
are highlighted or when there are some, or even many, outliers. The first
example shows that one (sub)word can be translated into multiple (sub)words
in the other language. In the graph-based attention visualization, this is visible
through multiple out- or in-going connections.
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Figure 4.13 — Typical examples of correct translations and the representation of
the alignment of words between different languages. In one example, the word
order in both languages is the same (left), and in the other, it is different (right).
In the graph-based attention view (top), it is possible to see if there is the same
word order when there are no or only small line crossings or if the word order
is different by larger crossings. In the matrix-based attention view (bottom), the
same or a similar word order can be seen by cells with higher values along the
diagonal. Outliers along the diagonal indicate a different word order. It is also
visible that (sub)words can be translated to multiple (sub)words or vice versa
or at least influence multiple (sub)words during the translation. These images
were created from sentences translated by an LSTM model.

Finally, it is also possible to change sentences without mistakes. Sometimes,
sentences are correctly translated, but different words or sentence structures
are used as the current user would prefer for the context of a sentence or to
express someone’s own style. Again, exploring and selecting alternative words
or sentences with the beam search view is possible. If we wanted to use an
alternative word like the one suggested by the model, it could be selected or
manually entered, and the remaining sentence would be updated accordingly.
Further, if we wanted to start the sentence with a different word or restructure
the whole sentence structure of the translation, the user could make some
adaption at any position of the translation, and the remaining translation would
use a possible appropriate continuation.

In all these cases, increasing the beam size to see more alternative translations
for a whole sentence (Figure 4.9) or positions within a translation can be useful.
This can help choose the best translation or support to rephrase one.
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After correcting and accepting multiple translation corrections, the document
view shows how translations were changed.

Model Fine-tuning and Retranslation After users correct multiple sentences,
they can choose to retrain the current model and retranslate not yet accepted sen-
tences (R5). The model is then fine-tuned using the user’s corrected sentences.
Afterward, the system translates the uncorrected sentences to improve trans-
lation quality. Since our document contains almost 100 times the keyphrases
“KI” or “KIs” that were wrongly translated, we retrained our model after cor-
recting only a few (less than 5) of these terms to “AI” or “AIs” (Figure 4.5).
After retranslation, the document view shows the difference in the translations
compared to before. For the LSTM and the Transformer models, almost all oc-
currences of “KI” are now correctly translated. The user can look at the changes
and accept translations or continue with iteratively improving sentences and
fine-tuning the model.

Architecture-specific Observations We initially designed our approach using
an LSTM-based model with an attention mechanism. Since other architectures
exist to translate documents, we also adapted it and tested its usefulness for the
Transformer architecture [322] (R6). This architecture is also attention-based,
and we analyzed how well it fits our interactive visualization approach. The
general workflow of our system can be used in the same way as the model
we initially developed it for: the document and metrics views can be used
to identify sentences for further investigation, and sentences can be updated
using the sentence and beam search view. The main difference between the
Transformer model concerning our approach is the attention mechanism that
influences the attention views and some calculated metric values.

The Transformer architecture uses multiple layers with multiple self-attention
heads instead of just attentions between encoder and decoder. There are
approaches to visualize this more complex attention mechanism [326, 327]. The
attention values for Transformers could, for example, show different linguistic
characteristics for different attention heads [91]. However, including this in
our system would make our approach more complex and not useful for end-
users (R7) with little knowledge about this architecture. As a simple workaround
to apply our visualization, we discard the self-attention and only use the
decoder attention. We explored the influence of decoder attention values from
different layers and averaged across all attention heads. Similar to Rikters [271],
we noticed that averaging attention from all layers is not meaningful. Using
one of the first layers showed similar results. For the final layer, a better
alignment could be seen. However, the last token of the source sentence



4.1 • Neural Machine Translation 123

received too much attention compared to other words (this tendency was
observable in every layer). Instead, using the second to last layer showed
a similar alignment between source and target words as it is available for
the LSTM model. Therefore, we adopt this as a compromise for using our
attention views and calculating metric values. By default, our system uses the
attention values of the second to last layer, but users can also select different
layers and compare their visualizations. An example showing the attention
values of different layers from the Transformer model can be seen in Figure 4.8.
Here, layer four seems to show the word alignments best, and the results are
comparable to the attention from the LSTM model (Figure 4.2 B).

Since there are different approaches and architectures developed for NMT,
we could incorporate them as well (R6). Some might provide better support
in gaining insights into the model and offer different visualization and in-
teraction capabilities. For others, new ways of visualization will have to be
investigated.

User Study

We conducted an early user study during the development of our approach to
evaluate our system’s concept. We used a prototype with an LSTM translation
model. The system had the same views as described before but limited features.
A group of 11 voluntary visualization and ML experts from our university
(six experts on visualization and five for language processing) were invited to
test our system online for general aspects related to visualization, interaction,
and usefulness. We aimed to ensure that we considered aspects relevant from
both the visualization and the machine translation perspective in our system
and to improve our approach. The user study was questionnaire-based to
evaluate the effectiveness of the system, understandability of visualizations,
and usability of interaction techniques. A 7-point Likert scale was used. In
this study, the German Wikipedia article for autonomous driving (Autonomes
Fahren) [338] was available to all participants. This allowed the participants
to explore the phenomena we showed previously. The participants claimed to
have good English (mean = 5.1, std. dev. = 0.8) and excellent German (mean
= 6.2, std. dev. = 1.7) knowledge. While the visualization experts claimed to
have relatively low knowledge about ML (mean = 2.5), the ML experts similarly
indicated lower visualization knowledge (mean = 3).

First, participants were introduced to the system with a short overview of the
features. Then, they could explore the system freely with no time restriction.
Afterward, they were asked to participate in a survey regarding the usefulness
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Table 4.3 — Ratings from our user study for each evaluated view are provided
on a 7-point Likert scale; mean and standard deviation values.

View Effectiveness Visualization Interaction

Metrics view 5.9 (1.1) 6.8 (0.4) 6.1 (0.7)

Keyphrase view 4.4 (1.6) 6.5 (1.2) 6.3 (1.1)

Beam search view 5.6 (1.5) 6 (1.3) 4.5 (1.8)

Attention view 5.6 (0.8) 6.2 (1.2) 5.9 (0.9)

of our system and its design choices. Additionally, there were free-text sections
for further feedback.

The general effectiveness of translating a large document containing more
than 100 sentences with our approach was rated high (mean = 5.6, std. dev. =
1.0) compared to a small document containing up to 20 sentences (mean =
4.5, std. dev. = 1.6). The results for effectiveness, ease of understanding and
intuitiveness of visualizations, and ease of interaction are given in Table 4.3.
The ratings for the visualizations were high for all views. Best rated was the
metrics view that additionally had the lowest standard deviation. As not all our
user study participants were visualization experts, we noticed that non-experts
could also manage to understand and work with parallel coordinates plots. We
conclude that our design choice for the visualization of metrics was appropriate.
The ratings for interaction were also very high, but there was more variation.
Especially the interaction for beam search was rated comparatively low and
had the highest standard deviation; two language processing participants
ranked it very low (1 and 2) and two (one from each participant group) very
high (7). This variation might result from the different learning curves for
different participant groups. Since we conducted the user study, we have also
improved the interaction in this view. For effectiveness, the keyphrase view had
the lowest rating. We believe the reason is that participants could not detect
enough mistranslated sentences with this view. However, this might be due
to our document provided and may differ from other documents containing
more domain-specific vocabulary, as we showed in our demonstration of use
cases.

In addition, we asked users for general feedback on our approach. Especially
the metrics view received positive feedback. Participants mentioned that brush-
ing and linking are helpful for quickly detecting mistranslations. For the beam
search view, one participant noted that the alternatives provided would speed
up the correction of translations. For one participant, the attention view helped
show the differences in the sentence structure of different languages. Neg-
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ative feedback was mainly related to interaction and specific features; some
participants suggested new features. Multiple participants noted that exploring
and correcting long sentences is challenging in the beam search view as the
viewport size is limited. Furthermore, a feature to delete individual words and
functionality for freezing areas was suggested. From the remaining feedback,
we already included, for example, an undo function for the sentence views.
Also, to find sentences that might contain similar errors, one participant rec-
ommended showing sentences similar to a selected sentence, and we added a
respective metric. Additionally, it was mentioned that confidence scores could
be shown in the document list next to each sentence and not only in the metrics
view. This would be helpful to quickly examine the confidence value even
if the document is sorted by a different metric (e.g., document order); small
histograms were added next to each sentence as a quick quality overview.

Quantitative Computer-Based Experiments

Additionally, we performed quantitative computer-based experiments to verify
that our metrics correlate with translation quality. We wanted to verify if
they support the detection of erroneous and poor translations. Additionally,
we were interested in the influence of correcting sentences on the overall
document quality. Finally, we examined how our models adapt to domain-
specific documents.

For our experiments, we chose the domain-specific Khresmoi EN-DE dataset by
Dušek et al. [109] from the WMT’17 shared biomedical translation task [348]. It
contains 1500 English sentences with complex medical terminology and German
translations. The dataset consists of a test set containing 1000 sentences and a
development set of 500.

Metrics to Detect Erroneous Translations In our first experiment, we veri-
fied that our chosen metrics (confidence, coverage penalty, sentence length, and
keyphrases) are suitable for detecting sentences with low translation quality (R3)
using both the test and development set consisting of 1500 sentences for evalua-
tion. Scatterplots for the respective metrics against the Translation Edit Rate on
Character Level (CharacTER) [331] score (a metric for translation quality on the
sentence level where lower values are better) calculated from the translations
by the model are shown in Figure 4.14 for the DE-EN LSTM model. Each
point represents one sentence. We see that confidence has the highest negative
correlation (r = −.35), whereas coverage penalty has a lower correlation (r = .25)
and sentence length a very low correlation (r = .13). For keyphrases, no correlation
is visible. For the Transformer model, the correlations were r = −.28, r = .06,
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Figure 4.14 — Scat-
terplots for different
metrics about the
CharacTER score cre-
ated for the DE-EN
LSTM model. Each
sentence is represented
by one point. Each
plot shows regression
lines and the Pearson
correlation coefficient r.

r = .05, and r = −.03, respectively, and therefore much smaller. The correlations
for the EN-DE models were similar. Generally, all metrics demonstrate a large
variance around the median of metric scores. For these ranges, the metrics are
not suitable as predictors. However, high and low scores for coverage penalty
and confidence could be used to detect poor translations. In these areas, the
variance is reduced. These outliers, especially the ones for confidence, are likely
to contain errors. For length, there is only a weak correlation with translation
quality. Nevertheless, finding the longest or shortest sentence using this metric
might still be helpful.

In another experiment, we sorted sentences according to their metric from
low-quality to high-quality. Then, we iterated over every sentence and recorded
the percentage of low-quality sentences covered so far by removing poorly
translated sentences. We considered sentences with CharacTER score larger
than one standard deviation above the mean score of the documents to be of
low quality. The result for the confidence metric showed the best improvement
and is highlighted in Figure 4.15 (left) for the DE-EN LSTM model. The result
for the Transformer model looks very similar. It can be seen that the coverage
percentage increases continuously. The dashed line shows a theoretical baseline
of whether the quality of sentences was uniformly distributed. The other metrics
are shown for comparison. Here, we notice more variation among the models
we used. The DE-EN Transformer model even had a negative impact of coverage
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Figure 4.15 — The percentage of sentences with low quality covered after an
increased number of sentences on the Khresmoi medical dataset was processed
with the DE-EN LSTM model (left). Improvement of average CharacTER scores
(middle) and BLEU scores (right) when removing sentences with low quality
using the EN-DE LSTM model. In each case, all sentences were sorted according
to the different metrics to define the processing order and explore their influence
on document quality. In each chart, we highlight one metric.

penalty. However, the length metric seemed helpful in this case. Results for the
EN-DE models were similar but showed a smaller impact.

Additionally, we observed how average CharacTER and BLEU scores would
evolve when removing sentences with lower metric scores. Figure 4.15 (middle)
shows for the EN-DE LSTM model the scores length, coverage penalty, and
confidence revealing a large improvement of average CharacTER scores for the
remaining sentences. Figure 4.15 (right) shows an improvement of BLEU scores,
especially for coverage penalty and confidence. As a note, at the end of this process,
when only a few sentences remain to compute the scores, a large amount of
variance is visible. Therefore, this part of the visualization is not representative.
We obtained similar results for all other models.

Domain Adaption As our system can use corrections to improve the NMT
model and to improve translation quality for domain-specific documents, we
evaluated for different metrics how the translation quality improved when the
models are iteratively fine-tuned (R5). Our initial test in the use case already
suggested that significant improvements can be made to domain-specific terms.
We tested the improvement of the document on the Khresmoi medical devel-
opment set and used the sentences of the test set to fine-tune our models and
vice versa. We simulated the user corrections by replacing initially generated
translations of our model with a reference translation as also done by Peris
et al. [252]. Sentences of the first document were sorted according to the metric.
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Figure 4.16 — Change of BLEU scores during
domain adaption for different metrics using the
DE-EN LSTM model on the Khresmoi medical test
data (top) and development data (bottom). On the
x-axis, the number of sentences that have already
been corrected is shown. On the y-axis, the differ-
ence between the BLEU score of the translation from
the retrained model and the one trained on out-of-
domain data is visible. The dashed line represents
the result when sentences are randomly ordered. In
each chart, we highlight the metric with the best
result. On the top, the keyphrase score performed
best, and on the bottom, coverage penalty.

Then, we iteratively fine-tuned our model after replacing the sentences with
their ground truths. Twenty sentences at a time were used for fine-tuning.
For evaluation, we computed the second document’s BLEU [246] score after
retranslation. For the LSTM-based models, we observed that using any metric
as well as a random ordering of the sentences improved the document quality
(Figure 4.16). Especially at the beginning, we noticed a significant improve-
ment for most of our configurations. Interestingly, starting fine-tuning using
sentences with a higher keyphrase score improved the document quality most
in the case of the DE-EN test set (Figure 4.16 top). At the same time, previous
experiments showed that the keyphrase score had a low impact on selecting
incorrect translations. However, not only did the keyphrase metric outperform
the random baseline (dotted line) over the complete run, but also coverage
penalty performed well, especially on the development set (Figure 4.16 bottom).
Confidence usually created an improvement similar to random ordering, while
previous experiments showed that this score correlates best when looking for
low-quality sentences. Our results suggest that first training our model on
sentences containing frequent domain-specific words or with a higher cover-
age penalty score adapts it to a domain better and faster. The results for our
Transformer architecture did not improve the document quality. While our tests
in the use case showed that the translation of keyphrases could be improved,
we could not see an improvement for the BLEU score. We believe this might
be due to an already higher BLEU score of the initial translation compared to
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our LSTM models. Further research needs to be done to achieve reasonable
improvements when adapting a Transformer model, which is beyond the scope
of our work.

4.1.5 Conclusion and Future Work

To conclude, we present a visual analytics approach for exploring, understand-
ing, and correcting translations created by NMT. Our approach supports users
in translating large domain-specific documents with interactive visualizations
in different views, and it allows sentence correction in real-time and model
adaption.

Our qualitative user study results showed that our visual analytics system
was rated positively regarding effectiveness, interpretability of visualizations,
and ease of interaction. The computer-based experiments revealed that using
the proposed metrics, particularly the confidence metric, can be effective for
sentence selection due to correlations of metric scores and translation quality.
The coverage penalty and keyphrase metrics also appear helpful in improving
document quality. Additionally, they showed that fine-tuning for a domain-
specific document improves translation quality for the whole document.

Currently, users have to use metrics to decide with which sentence they will start
correcting the translations. More research has to be done to detect mistranslated
sentences better automatically. For example, an additional ML model could
be trained with sentences already identified as wrong translations and results
could be used for a visualization where users could identify wrong translations.
This would be an example of ML4Vis4ML as introduced in Section 2.5.3. A
future step should include a more in-depth user study for our target group. For
example, we could evaluate the performance of translation tasks by comparing
our interactive approach with a manual method.

We believe that our system is helpful for people who have to deal with large
documents and could use the features of interactive sentence correction and
domain adaption. Comparing the use of our approach for LSTM and the
Transformer architecture showed almost no difference. For both, we could
successfully interactively improve the translation quality of documents and
see model-specific information. We argue that our general translation and
visualization process can also be used with further models, while in such cases,
some visualization views might need limited adaptation.
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4.2 Visual Question Answering

The second approach of this chapter is also located in the field of XAI for NLP:
a visual analysis approach for a VQA system (the VQA Explorer) is presented,
which is capable of automatically answering questions about an image. In this
approach, the input questions are represented as sequences of words and the
visualization approach focuses on the scene graphs representing the image
content and corresponding internal states of the model during prediction. Since
the analysis of sequences was only one part of this project, this thesis only
briefly describes the approach. A more detailed description can be found in the
work by Schäfer et al. [25] and Künzel et al. [7].

This section is based on the following publications:

• S. Künzel, T. Munz-Körner, P. Tilli, N. Schäfer, S. Vidyapu, N. T. Vu, and D. Weiskopf.
Visual explainable artificial intelligence for graph-based visual question answering
and scene graph curation. Visual Computing for Industry, Biomedicine, and Art (VCIBA),
8(1):9, 2025, doi: 10.1186/s42492-025-00185-y [7].

• N. Schäfer, S. Künzel, T. Munz-Körner, P. Tilli, S. Vidyapu, N. T. Vu, and D. Weiskopf.
Visual analysis of scene-graph-based visual question answering. In Proceedings of
the 16th International Symposium on Visual Information Communication and Interaction
(VINCI ’23), article 25, pages 1–8. Association for Computing Machinery, 2023, doi:
10.1145/3615522.3615547 [25].

(S. Künzel, T. Munz-Körner, and P. Tilli contributed equally to these two publications.)

The images shown in this section were created with the following source code/material:

• N. Schäfer, S. Künzel, P. Tilli, T. Munz-Körner, S. Vidyapu, N. T. Vu, and D. Weiskopf.
Extended visual analysis system for scene-graph-based visual question answering.
DaRUS, V1, 2025, doi: 10.18419/darus-3909 [28]. (The source code is also available
on GitHub: https://github.com/Noeliel/GraphVQA-Explorer.)

• N. Schäfer, P. Tilli, T. Munz-Körner, S. Künzel, S. Vidyapu, N. T. Vu, and D. Weiskopf.
Model parameters and evaluation data for our visual analysis system for scene-graph-
based visual question answering. DaRUS, V1, 2023, doi: 10.18419/darus-3597 [27].

We propose a visual analysis approach that allows users and developers to
gain insight into the reasoning process of a scene graph VQA system (page
41 in Section 2.5.2) using GNNs (page 48 in Section 2.5.2) for the prediction.
The VQA system is based on scene graphs [175] used by the prediction model
for answering the questions; the scene graphs represent the content of images
through nodes and edges. Our visual analysis system (Figure 4.17) facilitates
dataset curation and model explanation. It can help users in finding and
correcting poor and erroneous scenes. Additionally, internal information about
the model during prediction is presented to users to better understand the

https://doi.org/10.1186/s42492-025-00185-y
https://doi.org/10.1145/3615522.3615547
https://doi.org/10.18419/darus-3909
https://github.com/Noeliel/GraphVQA-Explorer
https://doi.org/10.18419/darus-3597
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Figure 4.17 — Overview of our visual analysis system: A ground truth scene
is shown in the user interface. The scene graph is drawn on top of the im-
age (A) with different options for the visibility of the image and scene graph (B).
In the panel on the right side, several information and settings are available:
meta-information about the current scene (C), additional settings for the visual-
ization (D), an area for asking a question (E), a list of all objects and relations
of the scene graph with filtering options and the possibility to add new ele-
ments (F). Background image: GQA dataset [165] (scene 2356326) under CC
BY 4.0.

underlying mechanisms and the reasons for correct or incorrect answers. This is
similar to the previously presented approach in Section 4.1. Due to the different
input data, prediction model, and prediction task, a different visualization
method had to be chosen. In the showcased visual analysis system, we integrate
the model, scene data, and user input. This allows us to observe information
propagation during message passing in GNNs. Users are able to modify both
the data of the scene graphs and the input questions to steer the model’s
attention.

The approach presented here focuses on RQ3: internal states during the pre-
diction process are shown to the user in the scene graph visualization. In this
approach, the relation to sequences lies in the input data (questions) and the
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data processing through the VQA model. RQ2 is also partially covered since
the appearance of visual elements can be customized, which might influence
the interpretation of the data.

The major contributions of this approach include the visual analysis method
for graph-based VQA systems and an evaluation of the key features of our
implemented system. We provide a demonstration of use cases, a quantitative
evaluation, and an expert user study. The source code of the system [26, 28]
and the evaluation data [27] is publicly available. Preliminary work for this
approach was done during the master’s thesis of Noel Schäfer [280].

4.2.1 Related Work

In contrast to existing papers dealing with explainability of NLP (e.g., Acti-
Vis [177], LSTMVis [301], RNNVis [228], NMTVis [15], and the system by Garcia
et al. [5]; also see Section 2.5.3 and Section 4.1.1), our approach is specifically
tailored to graph-based VQA. VQA is a rapidly expanding research area, with
many recent methods and datasets that enhance performance [354]. However,
like other areas of NLP, the interpretability of the models remains a critical issue.
Most existing work focuses on pixel-based visualizations that highlight areas
where the model focuses most while answering a question. These approaches
are based on different heatmaps plotted on top of an image. They can be applied
as attention maps of NNs with attention mechanism [205] or Transformers [164]
to highlight areas with the highest attention of specific layers. Goyal et al. [133]
use an importance map on the image and highlight important words in the
question using, for example, guided backpropagation. Class activation mapping,
such as Grad-CAM of CNNs can show the importance of each region of the
image related to the decision-making process of the model [328]. Others show
error maps to highlight areas that might be erroneous [266] or use multiple
maps for different VQA systems to generate a final heatmap [263]. Furthermore,
approaches have been designed explicitly to improve interpretability. The
model by Norcliffe-Brown et al. [237] learns a graph structure from the question.
Subsequently, bounding boxes as nodes and edges between nodes are visualized
on top of an image to indicate the most relevant objects and edges in relation
to the question, enhancing transparency. Compared to these papers, graph-
based VQA does not directly predict based on the image data but on scene
graphs [175]. Ghosh et al. [132] generate explanations in natural language from
a scene graph and an attention map. However, to our knowledge, no existing
work provides a visual analysis approach for VQA based on scene graphs.
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Figure 4.18 — An example instance of the scene browser. Each scene is repre-
sented by its image. Image thumbnails: GQA dataset [165] under CC BY 4.0.

4.2.2 Visual Analysis Approach

We build our analysis approach on top of a system designed for graph-based
VQA, namely GraphVQA [206]. GraphVQA is a framework that utilizes GNNs
and scene graphs to solve the VQA problem. Given an input consisting of a
scene graph and a natural language question, the framework produces confi-
dence scores for each possible answer category from a closed set. This approach
was developed for the GQA dataset [165], which comprises approximately 22
million questions on 113,000 unique images. The dataset also includes descrip-
tions of images via scene graphs that highlight key objects and their associated
attributes (such as color) and contain directed relations among objects in natural
language (e.g., relative position). In this approach, the input question is pro-
cessed with a Seq2Seq Transformer architecture to generate instruction vectors.
These vectors are then used during the graph convolutions by the GAT layers
to update the node embeddings.

Our visual analysis system consists of three views: The scene browser (Fig-
ure 4.18) can be used to search and select specific scenes and the evaluation
browser (Figure 4.19) can help identify erroneous scenes by analyzing prediction
results. The view to visualize individual scenes (Figure 4.17) with scene graphs
allows an analysis of internal states during the predictions and the possibility
of improving the scene graphs.
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Figure 4.19 — An example instance of the evaluation browser: For each question
from the GQA dataset, the top five predictions, along with their prediction
scores, are displayed.

Scene Browser In the scene browser (see Figure 4.18), all scenes of the dataset
can be seen and selected. It is possible to filter scenes based on scene identifiers,
object names, attributes, relation names, or the number of objects/relations to
be contained in the scene graphs.

Evaluation Browser The evaluation browser allows users to analyze the predic-
tion results of all questions in the dataset (training and evaluation data). This
view helps users identify question-scene pairs that lead to faulty predictions.
It provides two options for exploration: (1) It is possible to explore questions
and their prediction results (e.g., prediction results with their confidence scores,
ambiguity, or attention scores from the graph node aggregation) in a table.
Identifying a false prediction or low confidence score can be used to find corre-
sponding scenes that may need an improved scene graph for better predictions.
For example, questions with high ambiguity are likely to be wrongly answered
since the model could give a wrong object the highest weight for answering
the question. Here, ambiguity refers to an estimate of the potential uncertainty
of the question and considers the number of objects in the scene graph the
question may refer to by mistake. Users can select an associated scene to further
explore model behavior using our inference-connected visualization. (2) The
prediction results can be analyzed based on objects and focus object groups in
either a table or a scatterplot through performance values. Objects included
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Figure 4.20 — A node is selected from
the scene graph. The node is centered
within the bounding box of the corre-
sponding object. The bounding box is
highlighted in green. Additional in-
formation is displayed in the tooltip.
Background image: GQA dataset [165]
(scene 2356326) under CC BY 4.0.

in a focus object group are taken from the set of graph nodes with the highest
attention weights for all questions. In this view, it is possible to find objects that
have a low performance.

Scene Graph Visualization In the scene graph visualization (Figure 4.17), the
scene graph representing the content of an image is visible on top of the
corresponding image. The scene graph consists of nodes (for the objects) and
edges (for the relations). Graph nodes are colored based on the pixel data of
their corresponding scene objects.

As relations among objects are directed, two graph nodes are connected via at
least two edges. Relations are drawn as parabolas with vertices offset to the left
of the center to avoid overlap for both symmetric and parallel relations between
two objects. We show synthesized counter-relations in green and relations
natively present in the scene graph in yellow. The visualization provides filter
mechanisms for the visualized elements and user interaction to hover graph
objects to show an object bounding box and hide additional visual elements.
Tooltips contain additional information for elements (Figure 4.20). Additionally,
the user interface allows users to modify and improve the scene graphs for data
curation and to generate better predictions. For example, it is possible to add
and remove objects, relations, and attributes.

The question input field (Figure 4.17 E) can be used to pose an arbitrary question
about the current scene to the model. During model execution, various internal
model states are recorded to drive visualizations later on. For our GraphVQA
integration, we record the global node attention scores (graph gate weights)
and the attention weights of edges. Nodes with large attention values end up
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Figure 4.21 — A user asked
the question: “What is the
animal in the picture called?”
The model answers correctly
with “bear.” In response to
the input query, the GraphVQA-
GAT model computes weights
for each node and edge. The
size of the nodes visualizes
the graph gate weight for
a given node after the final
graph convolution. The corre-
sponding opacity value of the
edge visualizes the weight of
the edges. Background im-
age: GQA dataset [165] (scene
2356326) under CC BY 4.0.

contributing more to the final prediction. They can indicate which information
the model chooses to amplify in the context of the question to then base its
answer on. In our approach, it is possible to select the GAT [70] model to
generate predictions; this is a specific type of GNN (see page 48 in Section 2.5.2).
Every edge can be weighted differently in a GAT. Since GNNs aggregate
the hidden states of its neighbor nodes, we can leverage this information to
highlight certain edges over others. This information enables users to get
insight into the information propagation of the underlying GNNs. In our case,
GraphVQA stacks five such GAT layers. As a result, users can switch through
the attention weights of each layer and observe how strong the contribution of
certain edges is for updating adjacent node embeddings. Additionally, model
outputs are recorded. The labels belonging to the five highest-ranking categories
are displayed together with their confidence scores. In Figure 4.21, the graph
gates and edge attention are visualized for an example scene, and the prediction
result is shown on the right. Tooltips connected to graph elements contain
further contextual information about the elements.

Implementation The presented approach is a web-based interactive system,
implemented with TypeScript [58] running on the Angular [171] framework.
Python 3 [321] is used for the backend of the system using Flask [139] as web
framework. D3.js [65] is used for the visualizations.
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4.2.3 Evaluation

A typical use case of our approach is demonstrated in the following; additionally,
a summary of our quantitative evaluation and user study is presented. These are
different types of evaluation methods as described in Section 2.7. An instance
of the GraphVQA-GAT model we trained is used for the evaluation. With an
accuracy of around 93%, our model parameters perform similarly but not quite
as well as the parameters trained by Liang et al. [206].

Use Case

Poorly labeled scenes often do not result in satisfying predictions by the model.
The model can generate false predictions, e.g., when there are incorrect objects,
attributes, or relations in the scene graphs. In our tool, finding such scenes,
exploring them, and improving their scene graphs for better performance plays
a central role. In the following, we show examples of correct and incorrect
predictions, how a user can gain insight into the internal mechanisms of the
model, and explain the possibility of adding new scenes to the dataset.

Finding Poorly Labeled Scenes Data curation is essential to provide a high-
quality dataset. It includes the dataset being constantly maintained and im-
proved. As the first step, we need support finding poor scenes that may require
human correction.

In the scene browser (see Section 4.2.2 and Figure 4.18), it is possible to use
different filters to search for specific scenes and to sort the data by the number
of objects or relations in a scene. Additionally, the quality of individual labels
can be verified with the help of the scene browser. When filtering for a specific
term (e.g., for an object), the user receives a collection of the scenes that should
contain this term. However, we also noticed images where the relevant object
was not visible.

The evaluation browser (see Section 4.2.2 and Figure 4.19) has two different
views. Using the table for questions, users can sort for questions and corre-
sponding scenes that created wrong (or correct) predictions or prediction results
with low confidence. Both can be used to identify the corresponding scenes
that may need an improved scene graph for better predictions. Another way to
use the evaluation browser is to look for objects that have a low performance.
Such objects or object groups can be identified with low prediction quality in a
table or scatterplot.

Exploring Scene Graphs The scene graphs can be explored by inspecting the
ground truth representation and the result shown after posing a question. In
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the latter case, node gate weights and edge attention values of the prediction
process are visually presented.

When exploring a ground truth scene with a scene graph (Figure 4.17), it
is sometimes immediately visible how well a prediction might perform for
some questions. Without deeper exploration, it can be seen if most of the
image content is represented as objects and if relations connect these objects.
Sometimes, there are not enough objects, and only questions about specific
objects can be answered correctly. In other cases, relations between objects are
missing.

After posing a question, on the right side of the window (Figure 4.17 E), it is
visible what the model predicts, together with a confidence score and the four
following best prediction results (Figure 4.21). Additionally, the scene graph
shows internal information of the underlying model encoded as node size and
edge transparency.

Correct Prediction – Figure 4.21 shows an example of a correct prediction. We
asked the question: “What is the animal in the picture called?” The answer was
correct (“bear”, 100%). Also, the relevant object “bear” has the highest gate
weight.

Incorrect Prediction – There can be different sources of errors for incorrect
predictions. Besides a poorly trained model, the scene graphs could contain
errors or be incomplete.

In our evaluation, we noticed different types of prediction errors that can be
created with the model and require different corrections in the scene graphs.
The different sources of errors can be roughly categorized as follows:

• Missing scene graph – If no scene graph is available for an image, usually
no correct prediction about the content of the image can be performed.

• Missing object – Missing objects often result in wrong predictions when
subject to the question. Adding the relevant object usually generates the
expected prediction result. If the question is unrelated to a missing object,
it may not generate wrong predictions.

• Missing attribute of an object – Node labels for objects alone do not
always provide all the information needed about them. Additional in-
formation, such as the appearance (e.g., color), is also essential. Missing
attributes often result in bad predictions. While the scene graphs look
complete and suggest that the correct objects have the highest weights,
the answers can still be incorrect.

• Missing relation – Another source for poor predictions is missing rela-
tions. Only if the connections between objects are available along with
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meaningful labels questions about their relationship between different
objects (e.g., relative positions or if something is otherwise related (e.g.,
someone is holding/wearing something)) can be answered. Often, many
objects are defined in the scene graph, but connections between objects
in the image are missing. In our evaluation, we noticed that different
groups of objects or single objects were sometimes not connected. Then,
positional questions about these groups cannot be answered correctly.

• Incorrect label (of an object/relation/attribute) – Instead of missing ob-
jects, relations, or attributes, the already provided information can also be
incorrect. Then, the scene graph suggests that something other than the
actual content is visible on the image, and answers related to these objects
or connections are wrong. This can be wrong object names, attributes,
or relation labels. The sources for such errors might be typos, a lack of
precision during the annotation, or errors introduced when reusing (e.g.,
copying) parts of the same or other scene graphs. Similarly, we found
examples where labels were not incorrect but also not precise. Such cases
also needed correction (e.g., “plant” is a too general term for a “flower”).

• Ghost object – Sometimes, scene graphs contain objects not available
in the image. In other examples, objects were available twice (but with
different attributes) that also required correction. Such errors might be
introduced due to the same reasons as before.

• Multiple correct (but unexpected) answers – A limitation of the prediction
model we use is that it can answer every question with only one term.
Often, multiple different answers are possible to a question. In such cases,
the model selects one of the answers, and the others are usually listed as
the following best predictions. In the evaluation browser, such predictions
are still shown as wrong since a different answer was expected. Inspecting
such a case, a user quickly notices that the model also makes a correct
prediction but not the one that was expected from the dataset based on
the ground truth data. Additionally, there are cases where one object is
very large, and others are very small in the background, and the model
referred in the answer to the tiny object instead of the large one in the
center. Using the scene graphs, the model cannot differentiate if an object
is in the background, very small, or just partially visible in the image.
Deleting the nodes of the small items would lose information for other
questions and would not be in our interest. Therefore, correcting such
incorrect or unexpected predictions is not always possible.

As an example of an incorrect prediction, we asked the question: “What is the
bear doing?” (Figure 4.22 left). The model answers incorrectly with “brushing
teeth.” A correct answer would be “sitting.” The answer to another question,
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Figure 4.22 — An example where the model answers wrongly to the question
“What is the bear doing?” (left). The prediction with the highest probability
(“brushing teeth”) and the next highest ranked answers are incorrect. After
verifying that the object “bear” has no attributes (middle), it is understandable
that the model does not know what the bear is doing. After adding the attribute
“sitting” to the object “bear,” the model answers with a correct response (right).
Background image: GQA dataset [165] (scene 2356326) under CC BY 4.0.

where we implicitly suggested what the bear is doing, was also wrong: “Is
the bear sitting?” We explored the scene graph with our system. While the
node “bear” has the highest node attention (what was expected), the teddy
bear has no attributes (Figure 4.22 middle). This is why the model does not
know what the bear is doing. We decided to change the scene graph with
our system by adding the attribute “sitting” to the node “bear” to improve
the prediction. After this modification, both questions are answered correctly
(Figure 4.22 right).

Adding New Scenes Our approach also supports adding entirely new scenes
to the dataset. Users are free to upload own images, create a scene graph, and
pose questions. In a next step, such scenes could be used to retrain and improve
the model.

Quantitative Evaluation

To ascertain the relevance of the selected model internals and better understand
the implications of the information visualized in our approach, we perform
data analysis on model evaluation results to learn more about whether and
how intermediate model internals are related to inputs and outputs. We base
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our analysis on token co-occurrence as an intuitive measure of node/object
significance in the context of a question and a model prediction. We hypothesize
that an input question will specify a (group of) target object(s) to which it refers,
typically by name or by a distinguishing attribute. This leads to a statistically
increasing token co-occurrence count with the input question. Similarly, if the
model concludes an answer from a node in the graph, for example, a color or
a material, that node will statistically also register more token co-occurrences
with the prediction than the nodes of lesser importance that the model did not
base its answer on. In summary, we confirmed that nodes with higher token co-
occurrence counts with input question or prediction are statistically important
in the context of the question or the model’s generated answer. The graph
gate weights are important intrinsic values of GraphVQA-GAT. Visualizing
the graph gate weight per node lets the user see which nodes are focused by
GraphVQA-GAT. Our evaluation also revealed that the edge attention score
in the final graph convolution does not correlate significantly with the token
co-occurrence.

User Study

We performed a user study with experts to assess the usability and usefulness
of our visual analysis approach. We invited five experts in visualization and five
experts in NLP and DL who volunteered to participate in the study. Participants
were from our institution but were not involved in the research for this work
except for participating in this user study.

Each expert was assigned two main tasks, performing typical dataset curation:
(Task 1) Use the scene browser and evaluation browser to identify erroneous
scenes. (Task 2) Correct three given erroneous scenes using the interactive scene
graph visualizations. For the first task, the time using the browser and the
number of visited scenes were recorded; for the second task the time to complete
the task. In questionnaires, all participants provided information about their
background, assessed the various features of our system and provided general
feedback.

To find two erroneous scenes in the dataset, the evaluation browser is more
suited than the scene browser. This conclusion is based on multiple results
and observations. First, the experts preferred the evaluation browser. Second,
the experts completed the task faster using the evaluation browser. Third,
the experts completed the task by visiting fewer scenes, equalling less false
positives, using the evaluation browser.

In the second task, the experts corrected faulty scenes. We conclude that our
tool is suited for correcting faulty scenes in the VQA dataset. First, the experts
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considered our visual representation and visualization to be very helpful for
solving this task. Second, the task completion time was short with little variation.
Third, all scenes except one were successfully corrected.

In general, the experts considered our tool very useful for scene understand-
ing, scene correction, and VQA transparency, especially for teaching purposes.
Apart from minor remarks about usability, the most relevant critique by the
experts is the lack of scalability of manual dataset curation. This issue could
be addressed in future work, for example, by integrating more automation
into the curation process and considering the scalability of visualization ap-
proaches [269].

4.2.4 Conclusion and Future Work

We developed a visual analysis system for graph-based VQA models, allowing
users to browse through a collection of scenes to identify scene graphs that can
be filtered based on user preferences. Once a scene is selected, the ground truth
image and a visual representation of the scene graph are displayed. The tool
allows users to alter all crucial elements of scene graphs via adding, removing,
and editing nodes, edges, and attributes. This process is similar to the one
presented in Section 4.1 for NMT: First, users are supported in finding incorrect
predictions and can then correct them with the help of interactive visualizations.
The system uses the GraphVQA-GAT model for performing VQA tasks and
visualizes internal model parameters. Since we deal with a graph classification
problem, we enable our tool to visualize scores for each node that determine the
importance of nodes. To evaluate our approach, we provided a demonstration
of a use case, quantitative measures, and a user study conducted with experts
from visualization, DL, and NLP.

There are several ways in which our work could be improved and extended.
Since we tested our approach in the context of data curation, there are multiple
ways to speed up the process of improving the dataset. An automatic extraction
of information from images could be used to spot mistakes and missing objects
in the given scene graphs. A verification could compare if labels in scene graphs
fit the content on the image and show identified problematic scenes to a user
for final correction. Instead, automatically generated scene graphs could be
used as a base for improvements by the user. Additionally, after finding faulty
scenes, it might be helpful to identify similar scenes that might suffer from
similar issues. The process of correcting scene graphs could also be improved.
A better recommendation system and copy functionality could speed up the
creation of especially large scene graphs. After correcting multiple scene graphs,
a fine-tuning mechanism for the model could be implemented to improve its
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overall performance by re-training on the updated data samples. Additionally,
in other graph convolution models similar information may be available in
the final graph convolution. Such models could be investigated and used as
a basis in our analysis system. Furthermore, a larger study with additional
standardized questionnaires (see Section 2.7) could be performed. This study
could also provide stronger statistical evidence for our method.
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4.3 Summary and Conclusion

This chapter introduced two approaches in the context of XAI for NLP. Both
methods use text sequences as input, process sequential information during
training and prediction, and enable a visual analysis of internal mechanisms in
ML models. The goals of the visual analysis are to better understand, interpret,
and improve results created with supervised ML. Such a visual exploration can
help in debugging, data curation, and the decision-making process with the
goal of creating better predictions and gaining trust in the models by showing
internal information about the models to users. However, many issues still exist
for fully understanding and explaining the ML results and internal operations.
The approaches presented here show only a part of the relevant information
to fully understand the predictions. In addition, the information displayed is
not always helpful and meaningful for all cases of the examined data. Some
examples showed that our methods can actually lead to a better understanding
of the prediction and to improve the data or prediction result. However, there
were also cases where the information displayed was not understandable or
useful (e.g., the attention values of some layers in NMTVis for the Transformer
(Section 4.1) and the edge attention values in the VQA Explorer (Section 4.2)).
While the visualized information represents snapshots of the internal states of
a model, understanding the whole predictions might be very complex since
they are interconnected with many different aspects of the models. Often, when
results are not helpful to us for interpretation, the provided information does
not align with what we expect when, e.g., translating a sentence or answering a
question.

Both presented approaches are mainly centered around RQ3, the exploration
of internal states of ML. Our evaluation showed that such an analysis can
help better understand why predictions were correct or wrong. Especially for
incorrect predictions, it was often possible to see where issues in internal states
were present. However, since the underlying prediction models are considered
black boxes, we could not provide a solution to understand all aspects. A
solution to understand all characteristics should, for example, also include the
training data. In an example of the VQA dataset, we could often see why not
the correct prediction was made but not why the wrong prediction was made.
Here, a reason might be the training data. More research is required to solve
and understand more aspects of such black box models. While we explored
only sequential data here, the same applies to data and prediction models for
data with other properties.
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Projection-based Visual Analysis of

Sequential and Temporal Data

The previous chapters focused on analyzing temporal data from eye tracking
and methods to analyze and better understand ML models containing sequen-
tial aspects. Instead, this chapter uses different sequential data (including
time series and ML output) as input to create visualizations for the analysis
using dimensionality reduction methods. In the following approaches, the
input data is multidimensional, possibly high-dimensional, and dimensionality
reduction (see page 33 in Section 2.5.1) is applied to reduce the number of
features for visualization. The first work of this chapter (Section 5.1) visualizes
data of internal mechanisms of a text classification model (also see page 42
of Section 2.5.2) in an interactive visualization system. The second approach
highlights problems when using dimensionality reduction to generate visualiza-
tions for sequential data and suggests two interactive visualization techniques
to avoid misinterpretation of such visualizations.

Note that we use the term projection for generalization purposes for any dimen-
sionality reduction method applied to multidimensional data. An explanation
for why this term is not always used mathematically correct can be found on
page 4 in Section 1.

The first approach presented in this chapter would also fit into the previous
chapter since sequential data from ML is analyzed and it contributes to the
research field of Vis4ML (see Section 2.5.3). However, a second important
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aspect of this work is the analysis method: beyond other visualizations, visual
representations for hidden states are created with results from dimensionality
reduction. In this approach, we explore a text classification model; exploring
other sequential ML data would also be possible. Some master’s theses projects
I co-supervised used other input data in a similar application: hydrological
data [144], turbulence data [48], and the training data of a model used for the
prediction of heat conductivity [234].

5.1 Analysis of Hidden States

This chapter presents a visual analytics system to help ML experts analyze the
hidden states of layers in RNNs. This technique allows a user to interactively
inspect how hidden states store and process information while feeding a text
input sequence into the network to perform a classification task.

This section is based on the following publication:

R. Garcia, T. Munz, and D. Weiskopf. Visual analytics tool for the interpretation of
hidden states in recurrent neural networks. Visual Computing for Industry, Biomedicine,
and Art (VCIBA), 4(1):24, 2021, doi: 10.1186/s42492-021-00090-0 [5].

The images shown in this section were created with the following source code/material:

T. Munz, R. Garcia, and D. Weiskopf. Visual analytics system for hidden states in recur-
rent neural networks. DaRUS, V1, 2021, doi: 10.18419/darus-2052 [14]. (The source
code is also available on GitHub: https://github.com/MunzT/hiddenStatesVis.)

We introduce a visual analytics system (Figures 5.1 and 5.2) to improve the
interpretability of RNNs for text classification (page 42 in Section 2.5.2). Here,
internal states for the sequential processing of input words are explored with
the help of multiple visualizations. As an example, we created visualizations
for hidden states with the help of dimensionality reduction. Our approach
takes multiple text sequences together with their classification result as input.
LSTMs (see page 45 in Section 2.5.2) are used to process the text sequences for
the prediction.

In this approach, all RQs are touched. Sequences are visualized in the visual
analysis system (RQ1) as colored text, through a path in a projection generated
with dimensionality reduction, in a matrix visualization, and a histogram. For
some of the visualizations, parameter settings (RQ2) play a role in how the
data is presented to the user. This includes a threshold used for the labels in
the projection, which show words that might have a strong influence on the
prediction and represent large changes in the hidden state. Additionally, the

https://doi.org/10.1186/s42492-021-00090-0
https://doi.org/10.18419/darus-2052
https://github.com/MunzT/hiddenStatesVis
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Figure 5.1 — The main view of our visual analytics approach applied to a model
trained on the IMDb dataset. Some general information about the dataset is
shown on the panels (A) to (E): (A) The number of input sequences, the classes,
and how well the sequences were classified. (B) Visualizations of the different
classes to compare the number of input sequences that were correctly classified.
(C) This information is also visible in the form of a confusion matrix. (D) At the
center, the projection of all hidden states produced by the classification model
for all input sequences is visible. (E) On the right side, a list of all sequences
allows the selection of a sequence for further exploration. Underlying data
source: IMDb as available in Keras [88].

size or coloring of visual elements can be adapted. Visual analysis for ML (RQ3)
can be used for debugging, primarily to determine why a prediction is wrong or
correct (e.g., alternating text sequence in the projection, incompletely processed
text sequence, the mentioning of a popular person or some other content not
directly related to the sentiment of the text). In this approach, dimensionality
reduction (RQ4) is used to analyze the high-dimensional space of hidden states.
It is possible to explore the flow of an individual sequence within this space,
analyze how the prediction moves in this space, and see the changes in the
evolution of the prediction.

This is an extension of the work by Garcia and Weiskopf [129]. We extended the
approach by implementing an interactive visual analytics system that facilitates
the exploration of the classification process through brushing and linking [332]
in multiple coordinated views [273]. The system supports the detection of
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Figure 5.2 — Detailed view for one selected sequence from the IMDb dataset.
Different information and interactive visualizations are shown on panels (A)
to (D): (A) The sequence ID and information about the classification. (B) The
input sequence with each word is colored according to its expected prediction
(EP), i.e., what output the model would produce if that word was the last in
the sequence. (C) A heatmap matrix displaying how the model’s prediction
evolves during the sequence processing for each class (top) and overall (bottom).
(D) A histogram of the Euclidean distances between the hidden states of the
input sequence. (E) The center highlights in the projection the hidden states
produced by the sequence, giving insight into how the hidden state evolves
over the sequence processing. It is possible to define a threshold for distances
to show words in the projection resulting from a larger change in the hidden
state; this threshold is also visible as a horizontal line in the histogram. (F) On
the right side, the currently selected sequence is highlighted in a list. In the
example used for these visualizations, we note how the model first believed the
sequence to be classified as positive (blue) during the first few time steps of the
input sequence. However, as it obtained more information about the input, it
changed its output to a negative value (pink). Underlying data source: IMDb
as available in Keras [88].

correctly or incorrectly classified sequences and the process of debugging
misclassified sequences to identify why an incorrect prediction was performed
and which words contributed to such a prediction. We provide additional
information about the Euclidean distances between the hidden states and the
words that trigger larger changes. Further, we added visualizations that provide
general information about the classification results of the underlying model to
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provide an initial quality assessment of the classification of all input sequences.
The source code of our system is publicly available [14].

5.1.1 Related Work

Visualization and visual analytics provide interpretability to DNNs at several
levels [130]. Therefore, there exist many visualization approaches for DNNs
(also see Section 2.5.3). For instance, some techniques have been specifically
designed for an analysis of classification models. For example, ClaVis [6] is a
visual analytics system used to compare multiple classifiers. Other approaches
can be used to explain which input features were taken into account by the
model to formulate a prediction [116, 350] and how the decision process of the
model transforms the input data into a more abstract representation that facili-
tates the prediction [130, 157]. In particular, to highlight the differences between
the activations produced by elements of different classes, activation vectors
of the models can be visualized, as an example, by employing dimensionality
reduction [177] and heatmap matrices [265].

Although these methods manage to explain which input features impact the
classification, they offer little insight into how the model uses the input features
to build predictions. To address this problem, other techniques have focused
on an analysis of the internal activation vectors produced by the hidden layers
of the network [130, 157]. NNs process inputs by sequentially applying the
operation defined by each layer on the input data, generating an activation
vector that serves as the input for the next layer. Activation vectors can be seen
as a more abstract representation of the input data. They iteratively transform
the input data in a way that makes it easier to conduct the classification.

For a deep model to perform well, its hidden layers should produce data
representations whose classes are more distinguishable. Ideally, elements
from the same class should generate closely related activation vectors in the
final layers, whereas elements from different classes should generate different
activations. When this is not the case, it is an indication that the model is
underperforming and may not be suitable for that application.

Multiple studies have used visualization techniques to analyze activation vec-
tors [177, 265]. They employ techniques such as dimensionality reduction [177]
and heatmap matrices [265] to highlight the differences between the activation
vectors produced by elements of different classes. By doing so on multiple
layers, they can show the decision process of the model and how the input
representation evolves layer-by-layer. It also allows the user to identify classes
that may be harder for the model to distinguish.
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An activation vector analysis is as important for an RNN as it is for other
architectures, and the techniques above can also improve the interpretability of
these models. However, RNNs have extra complexity owing to the presence of
hidden states, i.e., internal memories that store information from previous time
steps in the input sequence. When a recurrent model reads an input sequence,
its internal hidden states are updated at each time step, generating an activation
vector after the entire sequence is processed. Such an analysis is even more
challenging when working with models trained for NLP tasks [345]. In a text
classification task, some of the input words may have a much larger impact on
the hidden states and the final prediction than other words. In addition, some
words may produce information that must be stored in the hidden states for a
longer period of time than other words. The natures of RNNs and NLP provide
new challenges that are not addressed through techniques developed only with
an activation vector analysis in mind.

Some techniques have previously focused on improving the interpretability
of RNNs trained for NLP tasks. For instance, LSTMVis [300] allows the
user to identify patterns in the hidden states when processing a sequence,
such as multiple-input words that produce a similar hidden state. Likewise,
RNNVis [228] employs a hidden state cluster visualization to correlate groups
of similar input words with hidden state configurations.

Although these tools can display patterns in the hidden state and relate them to
particular inputs, they do not address open interpretability issues. In particular,
to the best of our knowledge, there are no techniques that have addressed the
problem of visualizing how hidden state configurations are distributed in a
high-dimensional space and how different regions of this space correlate to
different prediction values. In addition, they did not evaluate the impact of
each input step in the hidden state configuration or, consequently, in the final
prediction. Here, we aim to discuss these challenges and introduce a set of
techniques that can resolve them.

5.1.2 Interpretability Challenges

The temporal nature of an RNN (also see page 45 in Section 2.5.2) introduces
new interpretability challenges when compared to other DNNs. Below, we
list three interpretability challenges that, according to our research, must be
addressed to achieve better interpretability with an RNN. This is not meant
to be exhaustive. Recurrent networks share several characteristics with other
architectures, which means that there is a strong intersection between the
interpretability issues present in RNNs and those in other models. Herein, we
focus on issues specific to RNNs.
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Input-to-Hidden-State Correlation When an RNN processes a sequence, it
has an initial hidden state vector in each recurrent layer. When the layer receives
the next element from the input sequence, this vector is updated according to
the information extracted from that piece of information. This behavior allows
the model to combine information from previous and future time steps to build
a final activation vector that, ideally, should contain the features needed for the
prediction task. Hence, the same input step (e.g., the same word in an NLP
model) can generate a vastly different hidden state depending on the words
that came before it. In addition, the impact of such an input on the hidden state
may differ since the initial time steps usually have a higher impact owing to the
lack of information of the model at this point. The analysis of the correlation
between the input values and their impact on the hidden state is a key element
in improving the interpretability.

Hidden State Space Analysis Hidden states are an abstract, high-dimensional
representation of the input sequence. However, unlike activations, they are built
iteratively during the processing of the input. The layer updates its hidden
state at every time step. We can interpret the space of all possible hidden
state configurations as a high-dimensional space within which the subsequent
layers apply a classification. Analyzing this space and understanding how
different configurations are spread over this space are important for increasing
the interpretability of the RNNs and answering questions such as whether there
is strong class confusion in the configurations and how they evolve during the
sequence processing.

Hidden-State-to-Output Correlation A model with a good performance
should produce hidden states that are easily distinguishable from the hid-
den states of the opposing classes, particularly in deeper layers. Because the
initial time steps may not hold sufficient information to distinguish between
classes, this separability must be built through the input processing. An im-
portant interpretability challenge of an RNN is to identify how intermediate
hidden states, created during sequence processing, correlate to the prediction
and how this prediction, changes when the RNN receives new time steps.

5.1.3 Visual Analytics Approach

Our visual analytics technique addresses the three challenges discussed in the
previous section. Our interactive approach consists of multiple views [273],
allows brushing and linking [332], and uses a visual analytics approach [182]
(see Section 2.1). We show different visualizations for different aspects of the
classification, where users can interact with the data provided for analysis. Our
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system consists of an overview of all classification data (Figure 5.1) and a more
detailed presentation of individual sequences (Figure 5.2).

The overview provides (1) some general information regarding the dataset and
its classification results (Figure 5.1 A–C), (2) the projection of the hidden states
produced for different time steps and input sequences for the entire dataset
(Figure 5.1 D), and (3) a table with the properties of all sequences, allowing the
user to select one sequence for further analysis (Figure 5.1 E).

Sequence-based visualizations are composed of multiple coordinated views, i.e.,
(1) some general information about the classification of the current sequence
(Figure 5.2 A), (2) a visualization of a user-specified input sequence colored by
the expected output for every partial sequence (Figure 5.2 B), (3) highlighting of
the trajectory followed by the hidden states produced through the selected input
(Figure 5.2 E), (4) a heatmap matrix displaying how the expected output evolves
through the processing of the input sequence selected by the user (Figure 5.2 C),
(5) a histogram showing the Euclidean distances between the hidden states of
the input sequence (Figure 5.2 D), and (6) a table where the current sequence is
highlighted (Figure 5.2 F).

To build these visualizations, we first trained the model (next section) and
extracted the hidden states produced in each time step for all test data. Thus,
we are left with a dataset of H = T × N hidden states, where T is the number
of time steps, and N is the number of test sequences. Each hidden state hi ∈ H
is a vector. For each of these configurations hi, we calculated the expected
prediction (EP) pi. An EP is the output produced by the model if the hidden
state hi were the last time step of the sequence fed into the model. The EP tells
us how the model classifies the input until that moment, and consequently,
how later time steps modify the model decision. We describe our visualization
technique in more detail below.

Classification Overview When loading a new dataset, an overview of the
classification quality of the available sequences is presented (Figure 5.1 A–C).
Herein, we used two different visualization approaches to show the effectiveness
of the classification for different classes. (1) A stacked bar chart (Figure 5.1 B)
shows the number of sequences for each class in the dataset and their classifica-
tion results. Each class has a unique color. The lengths of the bars indicate the
number of sequences. On the top, the color of the actual class is visible, and
at the bottom, a stacked bar shows the classification of the sequences. (2) A
confusion matrix (Figure 5.1 C) quantitatively reports the classification results.
Both visualizations show the same information in different ways. We decided
to include both of them because the confusion matrix represents the data in a
conventional manner, and the stacked bar chart provides a quick overview of
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the classification results and links to the other views by using the same color
encoding.

Hidden State Projection By projecting the entire collection of hidden states
H into a 2D space using t-SNE [319] (or another projection method; see Sec-
tion 2.5.1 for a selection of approaches), we can analyze how the space of hidden
state configurations is shaped (second challenge from the previous section).
Herein, we have a set of hidden states hi ∈ H that consist of the hidden states
of each sequence for each time step, where each hi is represented as a vector.
We then use dimensionality reduction on all hidden states hi to project them
into 2D for visualization. The dimensionality of each hidden state depends
on the number of hidden units that can be individually defined for LSTMs.
In our experiments, we used t-SNE; however, other dimensionality reduction
techniques can also be applied. A discussion on which technique or parameter
configuration leads to the best visualization for a particular model is beyond the
scope of our work. By coloring the data points according to their corresponding
EP, we can analyze how different regions in the hidden state space correlate to
the level of confidence that the model has with a given prediction. Figure 5.1 D
shows an example of this visualization for a binary classification. Because the
network has a single softmax output, our color encoding comprises a range
from zero to one. For a binary classification, a prediction of zero (a completely
negative review) is denoted by pink, and an output of one (a completely positive
review) is denoted by blue. A linear color gradient is used from the first to the
second color over gray (where the prediction is uncertain).

Although the data points are colored according to the EP by default, it is
optionally possible to differentiate between correctly and incorrectly classified
sequences using transparency. In addition, all data points belonging to a
sequence can be instead colored by the actual class of a sequence (Figure 5.3).
This helps identify regions of hidden states in which the classification is rather
certain or may have difficulties.

Input Visualization We visualize each time step of the input sequence, with
each word colored according to the EP produced by the model after reading that
word (Figure 5.2 B). Hence, the user obtains insight into which time steps are
more important for classification and how the EP evolves over the processing of
the sequence, addressing the first challenge from the previous section.

Visualizing the Expected Evolution of the Prediction The EP of multi-class
classification models is multidimensional, and thus cannot be encoded by a
single color. A usual option is to color the data points according to the label with
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Figure 5.3 — Projection for the Reuters
dataset. The data points of the se-
quences are colored according to their
actual class instead of the classification
result. In addition, points that belong to
correctly classified sequences are more
transparent. This visualization helps
identify areas where hidden states gen-
erate possibly incorrect model outputs.
At the top, most sequences were classi-
fied as money-fx (blue) instead of crude-
oil (green) or grain (red). Underlying
data source: Reuters [268].

the highest confidence; however, doing so implies that we will lose valuable
information about the strength of such confidence. To avoid this problem, we
add a supportive heatmap matrix visualization (Figure 5.2 C) that displays the
evolution of the EP vector over the sequence processing (the first challenge
from the previous section). Each row displays one possible class, and each
column denotes a single time step within the sequence. The color of each
square represents the EP of the model for that class at that time step. With
our tool, colors with higher saturation translate into a strong belief that the
sample belongs to that class, and colors with lower saturation indicate that such
belief is smaller. With this matrix, the user can identify whether the model is
confident toward the chosen class and at which point in the sequence processing
it achieves this confidence. It also allows the user to identify possible confusion
among the labels in the dataset. Below the heatmap, we also summarize the
class predictions to show the classes with the highest EP at a specific time
step.

Visualizing the Hidden State Trajectory The projection of the hidden states
(Figure 5.2 E) also allows the user to inspect the evolution of an individual
configuration, facilitating the analysis of how each time step impacts the hid-
den state and the EP. It also provides insight into when the model becomes
sufficiently confident of its decision. Our tool adopts the concept of time series
projections [45, 318] (also see Table 5.1 on page 171; in Section 5.2 the concept is
discussed in more detail), which connects low-dimensional projections of points
from a high-dimensional trajectory. Some of these approaches were designed
to yield rather smooth curves [45, 155], for example, by including piecewise
Bézier curves. However, our variant of the time series projections is purposely
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non-smooth (similar to the approach by Molchanov and Linsen [230] and van
den Elzen et al. [318]) because we give the user a choice to specify an input and
to visualize the specific points reached by the hidden state sequence produced
by the input. We color code the trajectory according to the EP of the starting
point of each line segment. Because the projection uses the same colors, it may
sometimes be difficult to discern the trajectory. Hence, we provide the possi-
bility of using gray levels instead to represent a temporal development. When
showing a trajectory for a sequence, the transparency of all data points that
do not belong to this sequence is increased. This technique addresses both the
first and third challenges described in the previous section. This visualization
and all other sequence-based views are linked to explore the relationship in
different views when hovering over visual elements. Moreover, a tooltip for each
element shows additional quantitative and text-based information about the
classification up to the current word or the transition between two words.

Visualizing the Distances between Hidden States In a bar chart, the Eu-
clidean distances between hidden states are shown for the input sequences
(Figure 5.2 D). In particular, larger distances (which we also refer to as jumps—a
term we also use later in Section 5.2 as a reference to large distances in the visu-
alizations of dimensionality reduction results) often push a classification further
toward higher confidence in one specific class. They are usually associated with
words that are common to the corresponding class. We provide a threshold
such that each word associated with a jump is shown along the hidden state
trajectory (see next paragraph).

Visualizing Words in the Hidden State Projection It is optionally possible
to show words that produce jumps between hidden states as an overlay on the
hidden state projection. The corresponding words often correlate with words
that are specific to one class. Similarly, the exploration of larger changes in time
steps in the EP for specific classes might have a similar impact. Such changes are
also visible in the input and heatmap visualization when the saturation of the
color or the color itself changes. Using a threshold, the words for these changes
can also be shown on top of the projection. In addition, words for changes
between classes (e.g., from positive to negative) can be added. Corresponding
words may also be specific to a certain class because they change the expected
classification up to this word. Often, the words may fall into multiple categories
because they all express a change or make a large contribution to the prediction
result. Showing these words for all sequences simultaneously for one of the
categories also revealed some clusters. For example, words triggering larger
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changes for hidden states may have hidden states similar to other words creating
a similarly larger change.

Our visualization is sufficiently generic, it can be used in the analysis of different
types of recurrent architectures, such as gated recurrent unit (GRU) [86] and
LSTM [156] (see page 45 in Section 2.5.2 for more details).

Implementation Data preparation and training were conducted using
Python 3 [321] and TensorFlow [29]. Projections for t-SNE were generated using
Scikit-learn [250]. Although all images in this section were created using t-SNE,
it would also be possible to use other projection methods instead (compare
Section 2.5.1 for alternative dimensionality reduction techniques). For our
interactive visualization system, we generated a web interface implemented
with JavaScript and Python using the Flask [139] framework; the visualizations
were generated with D3.js [65].

5.1.4 Use Cases

To evaluate our visual analytics approach, we demonstrate some examples of
how it can retrieve insight from models trained with two text classification
datasets developed for sentiment analysis tasks (page 42 in Section 2.5.2), the
Internet Movie Database (IMDb) dataset [213], and the Reuters dataset [268].
The IMDb dataset [213] comes with a binary classification problem in which
every input is a text sequence containing a movie review that is either positive
or negative. For this study, we used the IMDb dataset version available in
Keras [88]. We trained a model containing a single LSTM layer with 100 units
and an output layer with a single sigmoid activation unit, achieving an accuracy
of 85%. We opted for a simple model because our goal is to visualize the impact
of the recurrent layer in the model classification, and adding further layers
would require including them in the analysis.

By contrast, the Reuters dataset [268] comprises thousands of articles on eco-
nomics that can belong to one of more than 40 classes. For simplicity and easy
visualization of the results, we trained our model using only the five most
frequent classes (grain, crude-oil, money-fx, acquisition, and earns). For this task,
we trained the model in a similar fashion as the previous model, using a single
LSTM layer and an output layer containing five softmax output neurons, one for
each class. After training, our model achieved a test-set accuracy of 93%.

Below, we demonstrate how our method can be used to conduct analytical tests
in the aforementioned models. For the IMDb dataset, we used the first 100
sequences as input for our visualizations, and for the Reuters dataset, the first
500 sequences.
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Binary Classification

Using our approach, we can explore the classification of binary data. In the
following, we provide some insights into the IMDb dataset.

Classification Overview The overview visualization shows the relationship
between the number of positive and negative reviews in the input data and how
well they were classified (Figure 5.1 B and C).

Hidden State Space The 2D hidden state projection allows users to analyze
how the RNN models the high-dimensional hidden state space. In Figure 5.1 D,
we note that the model creates what seems to be a low-dimensional manifold
embedded in the high-dimensional space, which continuously moves from
completely negative reviews (pink) to completely positive reviews (blue).

Correct Classification Our tool facilitates an analysis of how the EP evolves
through the sequence processing by displaying the trajectory of the configu-
ration within the hidden state space and by displaying, with color encoding,
the changes in the EP values. Figure 5.2 and Figure 5.4 show the examples of
correctly classified reviews. These include typical reviews that were predicted
as positive or negative with high certainty, reviews that jump between the two
classes, and reviews in which it is not entirely certain throughout the prediction
whether the classification should be entirely positive or negative.

Typical positive and negative classification results are shown in Figure 5.4 for the
images on the left. The trajectories in the hidden state projection start in a neutral
region and then almost immediately jump toward the very positive or negative
regions. This behavior is also visible in the heatmap visualizations.

Figure 5.4 (c) shows an interesting insight uncovered by the tool for another
sequence. Although the review is positive, it is written with several negative
words appearing in most of the sequence, which makes the model alternate
its hidden state between a positive and negative EP. Only by the end of the
sequence does the model become certain that the review is indeed positive, and
the hidden state converges to a region of a highly positive prediction.

Figure 5.4 (d) shows an example of a review that is not very positive or negative.
In between, although there are some rather positive or negative words, the
review stays rather neutral overall, and the model struggles to classify toward
a single direction. Because reviews can be also neutral with only a slight
tendency toward positive or negative, such sequences may also be problematic
for humans to clearly classify toward one direction.
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(a) (b) (c) (d)

Figure 5.4 — Different examples of correctly classified sequences from the
IMDb dataset. From left to right: (a) Typical example of a positively classified
movie (blue). The first word that clearly classifies the sequence as positive
is “powerful.” Afterward, no word suggests that the movie might have been
negatively rated. The words “wonderfully,” “strong,” and “fascinating” result
in particularly larger jumps in the hidden state space. (b) A typical example of
a negatively classified sequence (pink). Right from the beginning, this review
was classified negatively. (c) The input starts with several negative words (pink),
making the model alternate between hidden states with high and low EPs.
Toward the end of the review, the intent of the writer becomes clear, and the
model settles for a positive output (blue). (d) A positively classified movie with
uncertainties. At the beginning and end, there are more indications of a positive
rating (blue). However, most vocabulary feels more neutral than highly positive.
In the middle, there is also a negative statement (pink). Underlying data source:
IMDb as available in Keras [88]

By correlating the time steps with the hidden states created by them, our
technique can identify undesired biases in the model. Biases occur when the
decision process considers non-representative features that an expert does not
consider if manually conducting the task. For instance, in Figure 5.2 E, the EP
of the model jumps to a highly positive value when the model reads the name
of an actress, i.e., Kristy Swanson. This is not the desired behavior because
there is nothing in that sentence up to that point that indicates a positive review,
and ideally, the model should only consider the sentiment of the reviewer, and
not whether a particular actor participated in the movie.

In all of these examples, some words are shown along the trajectories. These
words are the result of the larger distances of hidden states when processing
a sequence. Such distances for a whole sequence, for example, are visible in
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Figure 5.5 — Example of a wrongly classi-
fied sequence from the IMDb dataset. For
the first part of the sequence, the classifica-
tion is rather negative (pink). Only in the
second half of the sequence does the clas-
sification become positive (blue). The last
words in particular contribute to the incor-
rect classification, where the name of an ac-
tor appears, and afterward, the words refer
to another film that was rated better com-
pared to the current one. Underlying data
source: IMDb as available in Keras [88].

Figure 5.2 D. A threshold (shown by the horizontal line) is used to show only
words that result from a larger change. This visualization helps explore the
strength of the change along the sequence. It also shows that the lengths of the
lines in the projection do not always correlate with the distance in the original
space owing to the nonlinear projection method applied. For example, this is
visible when comparing the long blue line on the top in Figure 5.2 E to the pink
line on the left. Although the pink line suggests a large jump, the histogram
shows that the distance between the corresponding hidden states of the blue
line is larger.

Incorrect Classification An example of an incorrect classification is shown in
Figure 5.5. Although this review was negative, it was misclassified as positive.
An analysis of the visualizations showed that, at the beginning, the confidence
toward a negative classification was higher. However, in the second half, the
classification switches to a positive classification. This occurs because the name
of an actor appears, and the last part refers to a different movie that was
described with more positive words than the actual movie the review refers to.
After the last words (“academy award winner”), the model has no chance to
change the final prediction.
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Figure 5.6 — Classification result in the form of stacked bar charts (left) and
a confusion matrix (right). The visualizations show that there are many more
sequences available for the classes earns and acquisition compared to the others.
In addition, it is clear that sequences of the classes earns, acquisition, and money-
fx were well classified, whereas the model had problems with grain and crude-oil.
Underlying data source: Reuters [268].

Multi-Class Classification

In addition to a binary classification, our approach supports a multi-class
classification. It can be applied similarly with some adaptation regarding the
use of colors. Next, we report some insight for the Reuters dataset [268].

Classification Overview The classification overview (Figure 5.6) shows the
different classes with their corresponding color encoding, the number of test
sequences available for each class, and how well the sequences were classified.
It is clear that the frequencies for the classes vary substantially: earns and
acquisition are frequently included, whereas grain, crude-oil, and money-fx are
not. In addition, the correct classification achieved much better results for
earns, acquisition, and money-fx than the others, which were mostly classified
as money-fx. This provides some initial insight into the types of sequences that
should be further analyzed.

Hidden State Space and Heatmap Visualization The hidden state projection
visualization has certain limitations when handling multi-class classification
models. In particular, it cannot properly display how each data point relates to
each class. Here, the output of the model is a multidimensional vector in which
each dimension represents the likelihood of the input being from a certain class.
To mitigate this problem, we developed a supportive visualization in which
data points are colored according to the more likely class generated by that
hidden state. Hence, the color encoding in the projection simply represents
the predicted class, without referring to the strength of the confidence in
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Figure 5.7 — Examples of correctly classified sequences in a model trained
for multi-class classification. The projection provides insight into the class
distribution within the hidden state space. The heatmap matrix supports the
analysis by displaying the evolution of the EP over sequence processing. Hence,
the user can better identify at which time steps the model was able to distinguish
between classes. In the visualizations on the left, the model is certain for the
classification of earns (yellow). In the visualizations in the middle, the model is
uncertain between earns (yellow) and acquisition (violet), and both classes have
a similar EP while processing the sequence. In the visualizations on the right,
the model is uncertain among all five classes, and the EP for money-fx (blue) is
only slightly larger compared to the other classes. Similar cases are likely to be
misclassified. Underlying data source: Reuters [268].

the prediction. Only the color encoding in the heatmap matrix shows the
confidence in each individual class, using a color gradient ranging from white
(low confidence) to the respective color (high confidence). In the projection
visualization, it can be seen that the classes earns, acquisition, and money-fx
dominate and build different regions (Figure 5.7). To allow the user to visualize
how the EP of a hidden state differs among the possible classes, the heatmap
matrix visualization displays the evolution of the EP over the processing of an
input sequence.

Correct Classification Figure 5.7 shows multiple examples of correctly classi-
fied sequences from a model trained with the Reuters dataset. In Figure 5.7 (left),
we notice in the projection visualization that the hidden state sequence starts in
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a central location where classes are not clearly distinguishable. However, as the
sequence processing progresses, the hidden state moves to a region with more
certainty toward one of the classes (in this case, earns (yellow)). This conclusion
was supported by the heatmap matrix visualization. It should be noted that
the model does not distinguish any class until time step 15. At this point, the
model begins to converge toward the correct class. After the 20th time step,
the model does not significantly change its EP until the end of the sequence,
which leads us to believe that this sub-sequence contains sufficient information
for the model to make a decision toward that class. Figure 5.7 (middle) shows
an example in which the model is uncertain whether the sequence should be
classified as earns (yellow) or acquisition (violet). This is visible in all views: The
trajectory in the hidden state visualization moves along the border between
the two corresponding areas of the different classes, the colors in the sequence
switch between yellow and violet, and the heatmap visualization shows that
both yellow and violet have higher confidence values compared to the other
classes. Finally, Figure 5.7 (right) shows an example in which the confidence
for each class remains similar while processing the sequence. The correct class
has only a slightly larger confidence value than the other classes. However, the
trajectory clearly shows that all corresponding hidden states are located near
other hidden states of the same classification.

Incorrect Classification Figure 5.8 shows some examples of misclassifications.
Figure 5.8 (left) provides an example similar to the previous one, where the con-
fidence for each class is similar. The heatmap matrix shows that the model never
distinguishes the earns class (the correct one) from the others, and eventually
chooses an incorrect class at the end of the sequence processing. This indicates
that these classes are difficult to identify using the model. In the projection,
we can see that the trajectory is mostly located in the blue region (money-fx
class). However, in Figure 5.6, we can also see that there are many sequences
incorrectly classified as money-fx (blue). This means that many samples in this
region belong to a different class. This is also visible in Figure 5.3, where we
changed the colors in the projection to the actual classes of sequences instead
of the classification results. At the top, where sequences were classified as
money-fx (blue), the classes should actually be crude-oil (green) or grain (red) in
many cases.

Figure 5.8 (right) shows an example in which the model is more certain toward
a specific class (acquisition (violet)). However, the correct class is earns (yellow),
which has a higher confidence only at the beginning of the sequence. When
manually comparing different input sequences, it is sometimes also extremely
difficult for humans to differentiate classes and correctly classify them. Multiple
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Figure 5.8 — Examples of incorrectly classified sequences in a model trained
for multi-class classification. The heatmap matrix supports the identification of
the classes for which the model becomes confused and on how the EP evolves
throughout the training process, delivering an inaccurate result. In the left
visualizations, the prediction is quite uncertain between all five classes. This
is visible because the class contributions are similarly with low saturation
for all classes. In the right visualizations, the model is rather certain in the
classification of acquisition (violet), despite the correct class being earns (yellow).
Underlying data source: Reuters [268].

classes are also occasionally appropriate. The fact that earns more often contains
digits compared to acquisition, which more often contains continuous text, might
be one possible explanation for the improper classification of this example.

5.1.5 Conclusion and Future Work

We introduced a visual analytics approach to address three interpretability chal-
lenges in the analysis of RNNs trained for NLP applications. We demonstrated
through use cases some practical insights that one can achieve from using our
techniques, and that can be instrumental in improving the interpretability of
these models.
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As a topic that has attracted strong interest in both the ML and visualization
research fields, there are certainly more findings to come in the future. Notably,
it would be interesting to see more research on interpretability issues from
models addressing particular types of input data, such as videos [352], financial
data [329], and eye tracking [191]. Interpretability is the main bottleneck
faced by DL models, and more innovation in this topic will undoubtedly
bring more improvements across many different applications. Additionally,
an analysis of the visualizations generated with dimensionality reduction for
the sequential data is important to assess whether the interpretation of the
visualized time series is correct. Due to various interpretability problems
of dimensionality reduction results (such as false or missing neighbors; see
page 34 in Section 2.5.1), corresponding visualizations have the potential for
misinterpretation. This topic is discussed in more detail in the next section,
especially focusing on the challenges for temporal data.
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5.2 Visual Quality of Time Series Projections

The previous section presented an approach where, among other techniques,
dimensionality reduction was used to project multidimensional sequential data
to 2D for visualization. Dimensionality reduction, in general, can be used
to project time series data from multidimensional to 2D space and generate
visual representations of the temporal evolution with the goal of revealing
temporal patterns [45]. However, inevitable projection artifacts may lead to
poor visualization quality and misinterpreting temporal information. The
following visual analysis approach supports the interpretation of 2D projections
of multidimensional sequential data.

This section is based on the following publications:

• T. Munz-Körner and D. Weiskopf. Exploring visual quality of multidi-
mensional time series projections. Visual Informatics, 8(2):27–42, 2024, doi:
10.1016/j.visinf.2024.04.004 [22].

• T. Munz-Körner and D. Weiskopf. Supplemental material for “Exploring vi-
sual quality of multidimensional time series projections”. DaRUS, V1, 2024, doi:
10.18419/darus-396 [21].

The images shown in this section were created with the following source code/material:

T. Munz, and D. Weiskopf. Visual analysis system to explore the visual
quality of multidimensional time series projections. DaRUS, V1, 2024, doi:
10.18419/darus-3553 [20]. (The source code is also available on GitHub: https:
//github.com/MunzT/visualQuality.)

Visualizations for multidimensional temporal data generated with the result of
dimensionality reduction (Section 2.5.1) can suffer from several interpretation
issues (see page 34 in Section 2.5.1). Dimensionality reduction already has
various interpretation problems in the traditional context of point set projec-
tion. For sequential data, projected samples are connected by lines or curves
according to their sequential order to analyze the temporal evolution (see Fig-
ure 5.9 B). These visual connections may introduce additional artifacts and the
danger of misinterpretation. Examples are related to the lengths of these con-
nections and the interpretation of intersecting connections. With an uncertainty
highlighting visualization (Figure 5.9 C), we emphasize potential regions for
misinterpretation. An alternative halo visualization (Figure 5.9 D) enables users
to concentrate on the reliable parts of the visualization by making uncertain
parts less prominent.

This approach deals with RQ1, RQ2, and RQ4. Sequential data (RQ1) is rep-
resented as curves or connected lines using a projection to 2D generated with

https://doi.org/10.1016/j.visinf.2024.04.004
https://doi.org/10.18419/darus-3963
https://doi.org/10.18419/darus-3553
https://github.com/MunzT/visualQuality
https://github.com/MunzT/visualQuality
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Figure 5.9 — Overview of our interactive approach to visualize and explore
projections of multidimensional time series. (A) Multidimensional temporal
data (a 3D spiral) is used as input. Samples are colored according to their
temporal ordering from a brighter to a darker pink. (B) In a basic visualization
of the projection (t-SNE), subsequent samples are represented as dots connected
by curves. One time point (at the top right) was placed at a wrong location and
could be incorrectly interpreted as a temporal outlier. Additionally, there are
multiple intersections of connections and sudden strong changes (long connec-
tions) in distances between subsequent samples. Two visualizations can be used
to deal with such artifacts: (C) By uncertainty highlighting (7), projection errors
for samples and their connections are highlighted, and estimated distances
for locations at intersecting connections are shown. Different quality metrics
are mapped to the color (pink and blue for samples, purple and green for
connections) and size of dots and in-between connections. Histograms show
changes over time for time instances (4) and their connections (1), the distances
between subsequent samples in the original space (2) and in 2D (3) along with
their combination in a Shepard diagram (5), and the estimated distances at
intersections (yellow) (6). (D) The halo visualization fades out artifacts and
allows the focus on correctly projected data: the visibility is reduced according
to the quality metrics, and halos mitigate the wrong impression from misleading
intersections. The coloring of the samples shows the order of the data points.
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dimensionality reduction. The visualizations provide interaction techniques to
explore the visualizations themselves and link visual elements to other views
of our system to explore properties of the temporal evolution of the projection.
Parameter settings (RQ2) influence the size and appearance of visual elements
and, hence, how well an error or correctly presented data is perceived. The most
important setting of our approach is the choice of a quality metric; it decides
how the visual elements are presented and how the visualizations are perceived.
The use of dimensionality reduction on multidimensional sequences (RQ4) is
central to this approach. Interpretation problems existing in visualizations
created in such a way for temporal data are discussed, and new visualization
techniques are proposed for better interpretation of such visualizations.

We summarize our contributions as follows: (1) We explore and characterize
quality problems of projections for time series data introduced by lines or
curves that connect time instances, and that may lead to misinterpretation.
(2) We introduce uncertainty visualizations for multidimensional time series
projections to reduce misinterpretation along the temporal path using two
designs with different goals: an interactive visualization to explore projection
artifacts and analyze problematic regions of the projection with uncertainty
highlighting and a halo visualization where the representation of artifacts is
adapted to better focus on well-represented data. (3) We adapt quality metrics
for projections by considering the temporal relationships. (4) We provide a
quality assessment at line intersections in 2D space by estimating the distance
in the original multidimensional space. The source code of our approach is
publicly available [20].

5.2.1 Related Work

In the following, we summarize relevant work for visualizing dynamic data,
quality assessment of projection methods, and projection of multidimensional
temporal data.

Dynamic Data

Dynamic data can be characterized as a sequence of successive observations.
Since such data is almost omnipresent and highly relevant, there are many
approaches to visualize them. Visualization methods range from line charts (for
one-dimensional data) to stacked area charts [145, 147] (for multidimensional
data). Spatial data can be plotted as connected scatterplots (e.g., a scanpath
in eye tracking (see visualizations in Chapter 3)) on top of a 2D plane to
show the temporal development. An more detailed overview of methods to
visualize temporal data can also be found in Section 2.3. Typical for most of
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these techniques is a clearly defined direction for the temporal component (e.g.,
from left to right), or observations are connected by line segments to show the
sequential order. In the latter case, temporal information, such as speed, can be
derived from the sampling rate and the spatial context or may get lost. Different
visual encodings can be used to circumvent this [251].

The problem with all these techniques is that only a small number of dimen-
sions can be visualized simultaneously. If data has hundreds or thousands
of dimensions, they cannot be applied. In this case, methods to reduce the
dimensionality are frequently employed.

Data Projection

Dimensionality reduction methods (see Section 2.5.1) are commonly used to
handle multidimensional and high-dimensional data [115, 180] and provide
the possibility to work with a reduced number of features. These techniques
try to preserve important properties such as distances between samples or
local neighborhoods. Van der Maaten et al. [320] provide an overview of
many techniques. Typical examples include PCA, MDS, t-SNE, or UMAP (see
Section 2.5.1). For linear methods [96] such as PCA and metric MDS, distances
between all samples can be compared globally; nonlinear methods [203] such
as non-metric MDS, t-SNE, and UMAP try to show both local and global
structures.

The results of projection methods are frequently used to visualize multidimen-
sional data [115, 180]. However, a lot of information may get lost and it is often
impossible to faithfully represent high-dimensional data in a lower-dimensional
space [180]. Especially in a very low-dimensional space such as 2D, errors in the
projection can often not be avoided. Therefore, there are fundamental problems
of projection errors and interpretability.

A survey of different visual analytics approaches for dimensionality reduction
is provided by Nonato and Aupetit [236], who also include an overview of
techniques for evaluating distortions. For assessing the quality of a projection,
different quality metrics were introduced; overviews are available by Espadoto
et al. [118] and Gracia et al. [134]. The term metric is used to refer to a broad
range of methods for a quantification of quality characteristics, and not all
of these measurements strictly adhere to the mathematical definition of a
metric. This understanding of the term is also reflected in the publications
mentioned.

There exist visualization approaches to show projection errors such as distor-
tions/tears and artifacts. Many approaches use color coding to indicate areas
with poor projection results in a point-based fashion [229], on a map as a
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static image [283] or as an interactive system with the possibility to explore
the quality in relation to a reference point [43]. Interactive systems also allow
exploring the quality in multiple views with different visualizations to guide the
exploration [123]. Some techniques are specifically designed for one projection
method, such as t-viSNE [83]; others can be used more broadly (e.g., the method
by Liu et al. [208]). Aupetit [43] proposes an interactive proximity-based ap-
proach where projection errors are shown relative to a specified sample using
a colored map generated from Voronoi cells. ProxiViz [152] is based on this
approach and provides improved interaction techniques. Stress Maps [283]
show local stress on a map by calculating point-wise stress values to highlight
false neighbors. CheckViz [204] visualizes tears and false neighbors on a map
using Voronoi cells. Martins et al. [219] propose an interactive system that
allows the analysis of the neighborhood of reference points to find missing
and false neighbors. Liu et al. [208] visualize point-wise distance measure-
ments in an interactive system that also allows modification of the data through
movement and deletion. Rieck and Leitte [270] use persistent homology to
compare the quality of dimensionality reduction methods. Stahnke et al. [298]
explore the concept of probing and show where a better position for projected
samples could be, and Raj and Whitaker [262] use order-aware projection to
improve interpretability. DimReader [122] is an approach for reconstructing
the coordinate axis for nonlinear projection techniques to study infinitesimal
perturbations.

These approaches can be used on multidimensional data, but they were not
designed for quality assessment of dynamic data. They do not consider the
additional component of time and the relationship to temporally adjacent
samples.

Projecting Dynamic Data

Different projection methods have been applied to dynamic datasets from
various application domains to generate visualizations or interactive systems to
explore the temporal evolution. These methods have in common that they use
a dimensionality reduction technique on multidimensional temporal samples
to project them to 2D for visualization. Often, the linear projection methods
PCA and classical MDS [312] (both create the same projections [320]) are used
(e.g., Brown et al. [72]). Also nonlinear methods are frequently employed,
including non-metric MDS (e.g., van den Elzen et al. [318]), as well as t-SNE
(e.g., Garcia et al. [5]) and UMAP (e.g., Ali et al. [35]). These approaches connect
subsequent samples by either straight lines (e.g., van den Elzen et al. [318]) or
smooth curves (e.g., Bach et al. [45]) in order to show the temporal connectivity.
An example of the connection by smoother curves is the use of Catmull-Rom
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splines [45]. Some approaches use sliding window approaches to generate
high-dimensional data (e.g., Ali et al. [35]) or a smoother result (e.g., Ward and
Guo [333]). It can be seen that they all use the same basic concept with some
variations. This general approach is used in many different application areas
such as text [216], simulation [230], videos [45], graphs [318], sensor data [75],
medicine [68] and many others. It is apparent that there is a high interest in
using dimensionality reduction for the visualization of dynamic data in different
domains. The system introduced in Section 5.1 also represents such an approach.
An overview of publications using projection methods on multidimensional
temporal data for visualization is visible in Table 5.1. All of these approaches
use visualization of projected data to explore the temporal evolution, but none
explore whether we can trust the generated visualizations, and they often ignore
the fact that some observations could result from projection errors. Especially
the publications about Time curves [45] and Projection Path Explorer [155]
discuss how projections for temporal data can be interpreted. However, they
do not mention that there might be problems with the interpretation caused
by projection errors or the visualization itself. Brown et al. [72] mention the
problem with projection errors, but they do not deal with it since it is out of the
scope of their work.

Therefore, we aim to arrive at quality measurements that describe the uncer-
tainty of the visual mapping according to the projection quality and use them
in adapting strategies from uncertainty visualization [69, 214, 245, 256].

An evaluation of the quality of projections of dynamic data is presented by
Vernier et al. [324]. However, their quality assessment is only performed
globally for the full projection. There are further approaches that deal with the
projection of dynamic data. For instance, MultiProjector [98] is an approach
where a different representation of time was chosen: time is plotted on a
third dimension to mitigate overplotting issues of dimensionality reduction.
Dynamic t-SNE [264] generates a sequence of images where, for each time
step, one projection is constructed, and each point represents one dataset. In
our work, we do not consider such approaches since we focus only on static
explorable visualizations.

5.2.2 Uncertainty Modeling

When projecting multidimensional data to 2D, not all of the important infor-
mation can be maintained. Therefore, it is also possible to obtain the same 2D
representation for different multidimensional structures. For temporal data,
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Table 5.1 — Publications using dimensionality reduction on multidimensional
time series to project them to 2D for visualization and exploration. We provide
information about the input data, projection method, connection type, and
some further properties for each approach.

Year Publication Method Name Input Data Projection Connections Remarks

2007 Mao et al. [216] – Sequential text
documents

PCA, MDS Smooth
curves

Visualization of multiple documents

2007 Schreck
et al. [278]

– Financial data SOMs [184] Straight
lines

Trajectory bundle visualization

2010 Hu et al. [162] Motion Track Human motion
sequences

SOM [184]
and LLE [274]

Smooth
curves

Glyphs show images of motion,
multiple motion sequences

2011 Ward and
Guo [333]

Shape Space
Projections

Stock market data PCA Straight
lines

Long time series, sliding window
approach

2012 Bernard
et al. [57]

TimeSeriesPath Earth observations PCA Straight
lines

Data aggregation, interactive
analysis

2012 Chen et al. [85] Hierarchical
Parametric
Histogram Curve

Sequential text
documents

Distributional
scaling [260]
(variant of
MDS)

Straight
lines

Pictures at curve points

2014 Molchanov and
Linsen [230]

– Ensembles data for
climate and star
evolution

PCA, MDS Straight
lines

Multiple time series: simulations
with different parameters

2015 Bach et al. [45] Time curves Data-agnostic: video
frames, Wikipedia
article histories, brain
connectivity

Classical MDS Smooth
curves

Sample size/color and line
thickness/color encode additional
information (e.g., time), geometric
characteristics and patterns are
described

2016 Van den Elzen
et al. [318]

– Dynamic networks PCA,
non-metric
MDS, t-SNE

Straight
lines

Smoothing the data with a sliding
window, color of points according to
time or some attribute value

2016 Zhu and
Chen [356]

Performance
Histogram
Curves

NBA (basketball)
games

LMDS [101]
(variant of
MDS)

Straight
lines

Sliding window approach for
discretization, Gaussian kernel for
smoothing kernel

2017 He and
Chen [146]

– Representation
learning

Temporal
t-SNE

Smooth
curves

Multiple time series

2017 Rauber
et al. [265]

– Activations in NNs t-SNE Straight
lines

Multiple time series

2018 Brown
et al. [72]

ModelSpace User-interaction
behavior

Non-metric
MDS

Straight
lines

Multiple time series, sample
size/color and line thickness/color
encode additional information

2018 Cakmak
et al. [75]

ViCCEx (Visual
Chemical
Contamination
Explorer) system

Sensor data t-SNE Straight
lines

Multiple time series

2019 Ali et al. [35] TimeCluster Real-world data from
medicine and biology

PCA, t-SNE,
UMAP,
DCAE [163]

Straight
lines

Sliding window approach to
generate data, long time series,
low-dimensional data

2019/
2021

Steinparz
et al. [299],
Hinterreiter
et al. [155]

Projection Path
Explorer

Decisions made by
humans and
machines

PCA, t-SNE,
UMAP,
Isomap [307]

Smooth
curves

Multiple time series, describes
patterns emerging from multiple
trajectories

2020/
2022

Brich
et al. [67, 68]

– Medical surveillance
data

PCA, metric
MDS, UMAP

Smooth
curves

Multiple time series

2020/
2021

Garcia and
Weiskopf [129],
Garcia et al. [5]

– Hidden states of
LSTMs

t-SNE Straight
lines

Colored by classification result;
see Section 5.1

2020/
2022

Hägele
et al. [142],
Hägele
et al. [143]

Robot path
evolution

Robot motion
planning

PCA Straight
lines

Smoothing: aggregating several time
steps with a sliding window,
multiple time series

2021 Tsutsumi
et al. [313]

Reaction space
projector (ReSPer)

Chemical reaction
mechanisms

Classical MDS Straight
lines

Multiple time series

2022 Toda et al. [309] EvoMapper Evolutionary
computation

t-SNE Straight
lines

Multiple time series

2023 Bauer et al. [52] – Ensemble data of
liquid and gas flow
in porous media

Non-metric
MDS, t-SNE,
UMAP

Straight
lines

Multiple time series

2023 Tarner and
Beck [306]

Runtime
Evolution Paths

Runtime data of
software systems

UMAP,
Aligned-
UMAP

Straight
lines

Multiple time series
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this means that we can get the same image for different time series. Often,
there exists no best projection method to represent the original data and show
the most important features without projection errors and additional artifacts
created by the visualization. Our goal is to make the visualizations aware of
the uncertainties introduced by the projection and to minimize possibilities that
may lead to misinterpretation.

Characterization of Misinterpretations

Projection errors already occur in any traditional point-based projection (see
Section 2.5.1). However, in the visualization of temporal data, more information
is available than in classical projections. New for temporal data are the connec-
tions between samples to show temporal connectivity. These connections are
additional sources for misinterpretation.

Local Effects The length of the line that connects two subsequent data sam-
ples is intuitively interpreted as a distance. For our plots of temporal data, we
naturally relate it to the speed (of changes in the data) along the time series: a
large distance corresponds to a high speed of changes in data values. Therefore,
large variability in distances between samples would indicate that there is a
sudden or strong change in data values. Since these lengths are determined by
the location of projected subsequent samples, they highly depend on the chosen
projection method and are influenced by local stress between adjacent samples.
Therefore, this specific type of local stress plays a highly relevant role in time
series projections and makes it different from general point cloud projection.
We know that the type of projection method (linear or nonlinear) has a strong
influence on varying distances, and this might even be a property of the pro-
jection method when creating clusters for neighboring samples. Nevertheless,
this might lead to interpretation problems, especially for less experienced users.
From these considerations, we arrive at a characterization of misinterpretation
scenarios as illustrated in Figure 5.10:

C1 Varying distances between samples are linked to varying speed, which
will be misinterpreted if the varying distances do not appear in the original
data.

C2 An extreme case of the above is an erroneous “jump.” We use this term for
a large distance between two samples while other samples are relatively
nearby. This term was already introduced in Section 5.1.3 on page 155.

C3 An incorrectly projected sample could be misinterpreted as an outlier.
This is a special case of C2 with two jumps: one before and one after a
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Figure 5.10 — Characterization
of projection errors that may
lead to misinterpretation. The
left side shows simplified prop-
erties of the high-dimensional
input data regarding distances
between samples and intersec-
tions of their connections. The
right side shows possible 2D
projections (created via the pro-
jection P()) that do not match
the properties of the original
data.

sample. However, the interpretation of an outlier is quite different from
that of a jump.

Global Effects Intersections are caused by drawing connections between
samples. They are a global effect because intersections can occur for connections
that are very far apart temporally along the time series, which makes this
problem structurally different from the above local effects. Another difference
is that the intersection position does not directly result from projecting any
original data point. In fact, the intersection in 2D depends on the location of the
pairs of adjacent points but also on how connections between points are drawn
(e.g., straight lines vs. curves). Therefore, intersections result from a complex
interplay of the projection and the visualization of connections.

The natural interpretation of intersections is the recurrence of a temporal state.
However, it is very likely to have intersections in 2D space that do not corre-
spond to intersections in the original multidimensional space—or that do not
even correspond to close-by transitions along the time series. It is a funda-
mental and intrinsic problem: due to the curse of dimensionality [107], high-
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dimensional space becomes vast and largely empty, with very little probability
of hitting another part of the time series by chance. In contrast, 2D visualization
space is very restricted and greatly enhances the probability of intersections.
Wrong intersections can be summarized in the following misinterpretation
scenarios (Figure 5.10):

C4 There could be an intersection in the 2D projection, but none in the data.

C5 An incorrect intersection often comes with a jump (see C2) because a jump
covers a large distance and, thus, increases the chances of an intersection.

The five scenarios (C1–C5) are prototypical for misinterpretation issues. There
can be variants and combinations of these, and there might be other additional
scenarios (e.g., an intersection in the original data that was not projected as an
intersection) that are less likely to happen.

Relationship to Established Visual Patterns Bach et al. [45] describe several
visual characteristics and patterns in projections of temporal data. Many of
them are directly related to the interpretation issues we have outlined above.
Their temporal (or curvilinear) distance is identical to our discussion of the
length of connections. Related characteristics are their “point density” (density
of samples along the curve), “transitions” (as our “jumps”), and “outliers”
(identical to our definition). Therefore, these patterns in the visualization can
be directly mapped to our misinterpretation scenarios from local effects. Other
patterns from Bach et al. correspond to misinterpretations from global effects:
their “self-intersections” and “cycle” patterns. These can be directly mapped to
intersections from our description.

These visual patterns are easy to perceive and lead to an intuitive interpretation
of the underlying data. They are very strong visual features in the projection,
especially caused by the easy-to-perceive connecting curves. This is a great
advantage for reading such visualizations and using it for communication.
However, this advantage comes with the equally problematic disadvantage if
the visual patterns do not correspond to the input data. Therefore, time series
projections come with the serious danger of massive misinterpretation. With
our uncertainty modeling and visualization, we want to address this issue by
making the visualization aware of inaccuracies and communicating them clearly
to the user.

Requirements

We formalize requirements for our visualization approach to reduce misinter-
pretation of the visual elements as follows:
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R1 A visualization that supports users in identifying projection artifacts
concerning samples, lines, and intersections.

R2 Exploration of visual elements (samples, lines, and intersection), espe-
cially their relationship to their temporal and local neighborhood through
interactive visualizations.

R3 Quality metrics that consider the temporal relationships of samples and/or
their connections; these metrics should be integrated in the visualizations.

R4 A quality assessment at line intersections in 2D space to better understand
if an intersection is related to low proximity or the result of a projection
error/artifact from the visualization.

R5 A visualization that supports users in focusing on well-represented data.

These requirements are based on several sources: First, we derive them from the
characterization of issues from misinterpretation (see above). Second, we also
base the requirements on our experience with dimensionality reduction and
XAI, including supervised and unsupervised ML. More details about specifying
the requirements is provided in Section 2.6.

Processing Pipeline

In our approach, it is possible to analyze just one or multiple time series
with the same number of dimensions for each time step. For the following
pipeline steps, we treat all samples of each time series as one set. First, we may
use standardization (z-score normalization) for all our features. This step is
usually necessary if the different features come from different measurement
scales. However, if values have a low standard deviation, this step could
also negatively impact (e.g., noise that gets too much importance) and be
neglected [203]. Afterward, if the input data’s dimensionality is very high, all
samples get projected to 50 dimensions using PCA. Lee and Verleysen [203]
recommend this step before applying a nonlinear dimensionality reduction
technique because it removes many meaningless dimensions from very high-
dimensional data before continuing with the next steps. Finally, all samples are
projected to 2D using the actual linear or nonlinear projection method to obtain
coordinates for visualization.

Next, we determine intersections in 2D for the lines or curves used as connec-
tions in the visualization. In our approach, we provide both of these connection
types since previous work showed that both techniques are equally used (e.g.,
Bach et al. [45], van den Elzen et al. [318]), usually without justification why
specifically one of them was chosen. Moreover, we perform interpolation in
multidimensional space to get estimated data at intersections (R4). Then, we cal-
culate quality metrics for samples (R3), lines (R3), and intersections (R4). Finally,
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in an interactive visualization, samples, lines, and intersections can be explored
by brushing and linking to explore the quality metrics’ temporal development
and locations of artifacts (R1–R2). Alternatively, the halo visualization can be
used where projection and visualization artifacts are faded out (R5).

Multidimensional Dynamic Data Model

Our input data D consists of m time series Tg, each containing Ng n-dimensional
samples (also referenced as time steps, instances, or observations). In other
words, we have multiple multidimensional time series with possibly differ-
ent lengths, but the dimensions are the same for each instance of each time
series.

The h-th sample of time series Tg is defined as n-dimensional vector: xg,h =

[x1
g,h, x2

g,h, . . . xn
g,h] with xl

g,h ∈ R, 1 ≤ l ≤ n, n ≥ 1 and 1 ≤ h ≤ Ng. A time
series Tg consists of Ng samples: Tg = [xg,1, xg,2, . . . xg,Ng

].

Now, we use the concatenation of all samples of all m time series. The overall
number of samples is N = ∑m

j=1 Ng, and we have a list of all data samples
D = [x1,1, . . . x1,N1

, . . . xm,1, . . . xm,Nm
] = [x1, . . . xN].

Pairwise Euclidean distances between two samples xi and xj are determined as
di,j = ||xi − xj|| with xi, xj ∈ D. The distances in image space, after applying
a projection method P() to reduce the original space to two dimensions, are
determined as δi,j = ||P(xi)− P(xj)||. For the distance between subsequent
samples at time t and t + 1, we set i = t and j = t + 1. Here, xt, xt+1 ∈ Tg
belong to the same time series.

In our calculations, we use Euclidean distance, but this could be replaced
by other distance metrics. We chose Euclidean distance because it is widely
used and fits MDS or PCA projections. A different metric might fit better for
other projection methods. However, it is difficult to decide which distance
measurement is best to use. This depends on both the structure of the input
data (unknown before analysis) and the projection method. Future work could
investigate using other metrics.

Projection Quality

It is known that different artifacts can be created by dimensionality reduction,
such as false and missing neighbors. This leads to points projected to wrong
positions and variability in distances between neighbors. The position of these
points influences their connections that may lead to misinterpretation; this is
already described on page 172. Additionally, the points themselves may also
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contribute to misinterpretation, and their projection quality should be consid-
ered within the temporal context. Different quality metrics are available for
the quality assessment of dimensionality reduction methods [118, 134]. Vernier
et al. [324] even investigated how to adjust them for a global measurement of
temporal data. In contrast, we need local quality metrics to indicate the visual
quality of the projection for time series (R3).

Pairwise Metrics As the first type of quality metric, we introduce temporal
quality assessment for connections that are computed by only considering
distances between temporally neighboring samples instead of all samples.
This means that we use only distances between xt and xt+1. More precisely,
for an error estimation along connections, we calculate sequential distances of
connections in the multidimensional space and 2D:

qc1(xt, xt+1) = δt,t+1 − dt,t+1 qc1 ∈ [−1, 1]

All distances have to be normalized such that they can be compared between
the original space and 2D, and therefore, it is δt,t+1 ∈ [0, 1] and dt,t+1 ∈ [0, 1].
This quality measurement shows the error in 2D when the goal was to get the
same distances represented as in the original space. Negative values toward −1
indicate that a distance is too small, and values toward +1 that the distance is
too large. It is possible, and sometimes useful, to scale the resulting values, e.g.,
using standardization. This allows that smaller quality variances can be better
explored, e.g., if the maximum errors are not very large.

Alternatively, we provide a sliding window approach that extends the above
measurement to include variability in a larger temporal neighborhood. We
calculate for each connection in the sliding window of odd size w the normalized
difference between the distances in the original space and 2D and compare
the value of the actual connection to the mean value of the others. For an odd
w that considers the same number of connections before and after the actual
connection, we use:

qc2(xt, xt+1) =

δt,t+1 − dt,t+1 −
∑t+⌊w/2⌋

i=t−⌊w/2⌋,i ̸=t(δi,i+1 − di,i+1)

w − 1

 /2

qc2 ∈ [−1, 1]

This quality metric generates a smoother result compared to the previous mea-
surement by also considering a local temporal neighborhood and determining
a difference to the local mean distance.
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Point-Oriented Metrics The second class of quality metrics uses a traditional
approach for local projection quality in general. They consider data samples
individually and take into account the local neighborhood without using in-
formation about their temporal relationships. For the first measurement, we
consider a local neighborhood of size k to calculate the differences between
normalized distances in 2D and multidimensional space (local neighborhood
distances):

qs1(xt) =
∑i∈Utk

(δt,i − dt,i)

k
qs1 ∈ [−1, 1]

Here, we define Uik as the local neighborhood of xi in the original space,
consisting of k samples. If samples belonging to the local neighborhood are far
away, the value gets larger. A value toward −1 means that neighboring samples
are too close and a value toward +1 that they are too far away.

Additionally, we can determine the number of samples that are both within
the local neighborhood of xt in 2D and the original space. Vtk

is the set of k
nearest neighbors of xt in 2D and Utk

in the original space. We determine the
local neighborhood preservation as:

qs2(xt) = 1 −
|Vtk

∩ Utk
|

k
qs2 ∈ [0, 1]

Here, 1 means that the neighborhood in 2D and the original space are completely
different and 0 that the neighborhood is the same.

In our visualization approach, we provide access to these metrics in order to
facilitate different perspectives on quality. In all our visualizations, we use k = 5
and w = 7. We also tested additional approaches reflecting quality aspects
of a projection. Some of them can also be used in our system to highlight
alternative distance or neighborhood-related aspects of projections. Therefore,
we adapted existing approaches (Espadoto et al. [118], Gracia et al. [134]),
usually used for global assessment, on a local set of samples or distances.
For samples, this includes sliding window or local neighborhood approaches
based on normalized stress, correlation, trustworthiness, continuity, root mean
squared error (RMSE), and others. For the connections, we implemented
normalized stress using a sliding window. In our experiments, we noticed that
our previously presented methods created very appealing but also useful results.
However, depending on which aspect of projection quality someone wants to
explore, one of these alternative methods can be used instead. The quality
measurements can be switched interactively in our visualization system.
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Figure 5.11 — Illustration of our approach for determining distances in the
original space for intersections in 2D. Here, Catmull-Rom splines constructed
from three line segments are shown. Left: An example in 2D for two curves
with one intersection. The intersection occurs for the line segments s13 and
s22. Curve parameters a–d are associated with the length of the line segments
where the intersection occurs. Right: Simplified illustration for the original
space. In the corresponding line segments (s13 and s22 in the original space) of
the multidimensional curves, the same curve parameters are used to determine
corresponding positions on the two involved multidimensional line segments.
Between these multidimensional interpolated positions, a distance can be deter-
mined.

Intersection Reconstruction and Quality

We aim to understand if intersections of connections between points in 2D
correspond to intersections in multidimensional space or not (R4). To this end,
we have to first determine the position of line or curve intersections in 2D.
And then, we reconstruct the corresponding two points in multidimensional
space: one point on each of the connections. It is important to note that these
intersection points are not in the set of original data samples. Therefore, we
need a mechanism to reconstruct them. Finally, we can compute the distance of
the two points in multidimensional space. This distance is an indicator of the
error introduced by the intersection in 2D: the larger the original distance, the
larger the visualization error.

We support both straight lines and curves as connecting elements. Curves
are modeled as centripetal Catmull-Rom splines [353]. For the calculation
of intersections between two lines, we use the Bentley–Ottmann sweep-line
algorithm [56]. The intersection computation in 2D is straightforward for
straight lines. For Catmull-Rom splines, we use the individual line segments to
determine the intersection based on segments; in Figure 5.11, for example, from
line segments s11, s12, and s13.
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To reconstruct corresponding points in multidimensional space, we use piece-
wise linear interpolation there. For straight lines, we readily interpolate in
multidimensional space. For Catmull-Rom splines, we generate a multidi-
mensional Catmull-Rom spline first. Then, we find possible positions of the
representative multidimensional samples on multidimensional connections by
linear interpolation of the corresponding line segments of the multidimensional
curve.

In Figure 5.11, there is an intersection between the line segments s13 and s22
in 2D. The reconstruction is performed on the corresponding segments (s13
and s22) in the original space. While this approach should return an accurate
estimate of the interpolated point in the original space when using linear
projection, the result may be wrong for nonlinear projection methods due to
the nonlinear behavior between samples. However, for small enough segment
lengths, the approximation leads to good accuracy. The numerical quality
could be further improved by applying curve subdivision and bisection to
determine the multidimensional points. Finally, a metric value for intersections
is determined by calculating the distance between the two estimated positions
of samples in the original space (see Figure 5.11).

5.2.3 Visual Analysis Approach

Our goal is to provide an exploration system for projections of multidimensional
time series data to minimize misinterpretation and to be aware of uncertainty
(R1, R2, R5). To achieve this goal, we use the aforementioned metrics (R3, R4)
to assess the quality of the projection. Time is not part of the projection and is
only implicitly added by connecting subsequent samples. We draw projected
samples as dots and connect them by either lines or curves to show the temporal
sequence. In case we connect them by curves, we generate a piecewise linear
centripetal Catmull-Rom curve [353]. This category of Catmull-Rom curves
is aesthetic and does not self-intersect. In our system, it is possible to show
multiple time series together to compare temporal behaviors.

We provide two different visualization modes with different design goals.
The first one (Figure 5.12) highlights areas with wrongly projected areas (R1)
and allows interactive analysis of projection errors (R2) according to different
quality metrics (R3). With interactive exploration, users can identify projection
errors (R1) and verify for intersections what they mean (R4) for the actual input
data. The second one (Figure 5.13) introduces visual changes to support users in
focusing on correctly projected data (R5) without being distracted by projection
errors and misleading representations.
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Figure 5.12 — Screenshot of our
interactive uncertainty visualiza-
tion (7) with data plots (1–6) for
temporal analysis: temporal evo-
lution for the metrics of time
instances (4) and their connec-
tions (1), distances between sub-
sequent samples in the original
space (2), in 2D (3), and as a com-
bination in a Shepard diagram (5),
and estimated distances at inter-
sections (6). The same spiral data
as in Figure 5.9 is used; UMAP
was applied for the projection.

Faded
jump / intersections

Small dots show
projection errors

Figure 5.13 — Halo visualization
of the same data and projection
method used in Figure 5.12.

The visualizations contain dots and connections using different colors and sizes
that correspond to quality metric values. We show highlights (Figure 5.12)
or halos (Figure 5.13) for intersecting lines in 2D whose size depends on the
distance in multidimensional space. Our approach can be applied to any
dimensionality reduction technique that can be used to create 2D projections.
Even for nonlinear methods, it supports the awareness of different distance-
related aspects.

Uncertainty Highlighting and Interactive Exploration

Our interactive analysis systems (Figure 5.12) allows the exploration (R2) of
different quality metrics (R3) using brushing and linking [332] on different
views [273]. The visualization of the projected data is visible in the center of the
main view (Figure 5.12 (7)), showing quality properties for samples, connections,
and intersections (R1, R3). Here, different quality metrics are used for visual
encoding in the form of color and size for data samples and connecting lines.
The temporal evolution of the metric values for samples and their connections
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are also shown in histograms on the left side to better evaluate changes and
spot outliers in the temporal context (Figure 5.12 (1, 4)). Similarly, both 2D and
multidimensional distances between neighboring samples are visible along the
timeline (Figure 5.12 (2, 3)) as reference. Their relationship is also shown as
Shepard diagram [176] (Figure 5.12 (5)). Usually, in such a diagram, the pairwise
relationship between all samples is visualized; we use it only on the subset
of temporally neighboring samples and add lines between each observation
to show the temporal development. Finally, the estimated multidimensional
distances at intersections (Figure 5.12 (6)) can be inspected as well. In all these
plots, except for the Shepard diagram, time is plotted on the x axis and the
metric value characterizing the quality or distance along the y axis. In the
Shepard diagram, the 2D distances are mapped to the x axis and the original
distances to the y axis. For the quality metric plots (Figure 5.12 (1) and (4))
and the distance plots (Figure 5.12 (2) and (3)), the mean values are shown as
dotted lines. In Figure 5.12 (6), where distances at intersections are shown, the
same mean value as in Figure 5.12 (2) is depicted that was computed for all
connections in the original space. Additionally, a solid line in Figure 5.12 (6)
indicates the maximum length of all connections. In the Shepard diagram, a
diagonal line shows where points should ideally be located to have a good
projection that preserves distances proportionally.

Hovering a line, dot, or intersection in either the view with the projection
(Figure 5.12 (7)) or the diagrams (Figure 5.12 (1–6)) on the left highlights the
corresponding elements also in the other views. This helps in the exploration of
both temporal and local relationships. While it is possible to follow in each view
the temporal path, the projection allows the exploration of the neighborhood
additionally, and in the other views, temporal relationships might get better
visible. A tooltip can be shown containing additional information about the
selected element.

Quality Metrics and Visual Encoding

We apply the previously described quality metrics (page 176 in Section 5.2.2) to
get both point-based and pairwise values to encode samples and connections
(R3). Usually, a good quality value equals 0, and values indicating an artifact go
toward 1 or −1 (usually, positive values mean a value is too large, and negative
ones mean too small, depending on the chosen metric). Additionally, especially
when only small variances are available, standardization can be used to stretch
the value range in such a way that the mean value represents 0, and the whole
color gradient is used to better explore smaller variances or distributions with
few outliers.
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We use the values of quality metrics for the color and size of lines, dots, and
semitransparent disks (highlights) at the position of intersections. Absolute
values are used to determine both color brightness and element size. Lower
values for dots and lines get a brighter color than high values. For samples,
we use pink for positive values and blue for negative ones; for connections,
we use purple and green, respectively. As we usually expect the mean value
as “perfect” distance, we assign a value of 0 (using standardization) and draw
corresponding dots in gray. Line thickness and dot size are larger for higher
absolute values. Note that both color value and size are possible visual variables
that can be used for uncertainty encoding [214].

The actual metric values for distances can be explored using tooltips and brush-
ing and linking to interact with additional plots (Figure 5.12 (1–6)). As an
example, Figure 5.12 (1–3), (5), and (7) show color information about connec-
tions. Green indicates a too small metric value, and purple means a too large
one. Often, green and purple connections are located temporally next to each
other when using a sliding window approach. For samples, Figure 5.12 (4),
(5), and (7) contain information; pink indicates a too large metric value and
blue a too small one. For example, when using the quality metric qs1 (local
neighborhood distances) for samples, pink and blue dots indicate that distances
to neighboring samples are too large or too low, respectively. When using qc1
(sliding window approach) for connections, purple and green connections mean
that the distance is too large or too low, respectively, according to their temporal
neighborhood. Besides the previously mentioned quality metrics, it is also
possible to color samples and connections by time or use the distance between
neighboring samples in the original space, reflecting the speed between samples
if they were temporally equidistant. Since a large number of time instances
makes it sometimes difficult to explore both dots and lines due to overplotting,
elements can be hidden or drawn in a neutral subtle way to focus on only one
type of visual elements.

We draw highlights for intersections in gray when their represented distance
is smaller than the mean distance of every distance between two subsequent
samples. If the distance is larger, yellow disks are used instead. We added this
differentiation since we wanted to categorize the type of distance as well. The
size of the disk is scaled depending on the maximum distance estimated at all
intersections to avoid visualization of very large disks. These highlights are
plotted on top of the other elements and are slightly transparent in order to be
able to see the projected data and areas with multiple highlights. The colors are
used both in the plots on the left side and in the projection.
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Halo Visualization

The previously described artifact highlighting draws much attention to parts
with low projection quality (R1) and, thus, it may impair the visualization of
the other, reliable parts of the visualization (R5). This problem is addressed
by a complementing uncertainty-aware visualization that uses halo rendering
(Figure 5.13). The idea is that samples at wrong locations in 2D and respective
connections should be drawn small and thin and intersections in 2D that
are not represented in the original data should be faded out to prevent false
interpretations. Therefore, the halo visualization does not highlight artifacts
but rather reduces the visual perception of these elements.

An example is shown in Figure 5.13: While a visualization with connected
points suggests a large jump with two intersections in our exploration system
(Figure 5.12), corresponding samples in our halo visualization are small com-
pared to other samples, and the connecting line is very thin. Additionally, the
line with intersections is discontinued to show that no intersection is available
in the original data.

We achieve this inverse impression by reversing the contribution of metric
values of the quality to the size of samples and lines and putting a white
halo under the intersecting lines similarly to the haloed line effect used in 3D
visualizations [42, 119]. The halos are more blurred on the outside; relying
on fuzziness is an intuitive indication of uncertainty [214]. Color is used to
represent the temporal ordering of samples.

Implementation

The data preparation and preprocessing steps of our approach are performed
with scripts implemented in Python 3 [321]. Projections are performed with
Scikit-learn [250] for PCA, metric MDS based on SMACOF [100], and t-SNE;
additionally, we use the UMAP library [225]. Our interactive system has a web
interface and is implemented with JavaScript and Python 3; visualizations are
generated with the D3.js [65] library.

5.2.4 Examples

In the following, we explore results generated with our approach for different
types of datasets. First, we apply it to artificially generated data that contains
typical temporal patterns. Then, we use simulation and a real dataset. In all
our experiments, we performed feature standardization in preprocessing. In all
images, we used Catmull-Rom curves for connections.
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Figure 5.14 — Different ex-
amples where artifacts are
highlighted for PCA, MDS,
t-SNE, and UMAP projec-
tions. From top to bot-
tom: (a) two intersecting
lines, (b) multiple clusters
connected by intersecting
jumps, (c) 3D spiral, (d) 3D
spiral with varying radius,
and (e) variance in the dis-
tance between samples.

Artificially Generated Data

We first demonstrate our approach on artificially generated data. The data has
a relatively low number of dimensions to explore the influence of our approach
to data we can still intuitively understand. We show examples for scenarios
C1–C5. Our examples use 3D data for circles, spirals, clusters, and intersecting
lines and consist of 200 time steps for Figure 5.14 (a), 100 for Figure 5.14 (b), and
1000 for Figure 5.14 (c)–(e). The number of intersections varies between 0 and
358 depending on the data and the projection. Since our approach is projection-
agnostic, we applied different methods frequently used by the visualization
community (PCA [160], MDS [187], t-SNE [319], and UMAP [225]) as already
introduced in Section 2.5.1. For samples, we use the quality metric qs1 (local
neighborhood distances), and for connections qc2 (sliding window approach),
as described on page 176 in Section 5.2.2.

As common artifacts, we observed jumps in the 2D projection that are not
present in the original data (C2, C5). Figure 5.14 (d) shows for a 3D spiral
examples of MDS and t-SNE, and Figure 5.14 (c) for a 3D spiral with increasing
radius of t-SNE and UMAP. In these cases, the distance in the original space is
small, and in 2D large. The connections are, therefore, rather thick and purple.
Additionally, samples before and after a jump are highlighted in pink since the
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p = 10 p = 30 p = 50

Figure 5.15 — Our approach applied to different t-SNE projections created with
different perplexity values p for the same input data. It is noticeable that the
number of jumps decreases. The same input data as for Figure 5.14 (d), a 3D
spiral with varying radius, is used.

distances to the local neighborhood of the original space are too large in 2D. We
could also confirm our distance-related observations in the different views in
our interactive system. Additionally, when we think of the 3D spirals used as
input, the distance between neighboring samples is always equal (Figure 5.14 (c))
or continuously increasing (Figure 5.14 (d)). Therefore, a jump is not present
in the original data. For t-SNE, we observed that the number of such jumps
decreases with a higher perplexity value; Figure 5.15 shows an example of
different values for the input data of a spiral with increasing radius. With our
approach, the jumps are clearly marked as artifacts; both the lines and adjacent
samples are highlighted. The highlights at intersections of connections that are
the result of such jumps show that most distances are rather high.

There is a difference in the distances and intersections visible in Figure 5.14 (b).
In this example, the time series consists of multiple clusters. Here, jumps and
intersections are also visible. However, most of the connections are very bright
(or even green), indicating small distance errors (or a too short distance). Also,
there is no or just a small highlight at the intersections, i.e., the estimated
positions in multidimensional space are nearby. From our artificially generated
cluster data, we also know that samples of the cluster are nearby, but there is a
larger distance between the clusters.

Next, Figure 5.14 (d) shows an example of PCA with multiple intersections. Our
approach marks these positions with a large distance since these intersections
are not present in the original data (C4). In the underlying data (a spiral),
no intersections are present. Without the highlight, one would have assumed
that there might have been a temporal recurrence, especially as other projected
samples are nearby. Many other examples where no intersection is present in the
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original data show jumps in combination with intersections (e.g., Figure 5.14 (d)
for t-SNE). When users are aware of this common pattern, they can examine
such cases with care. Since in this case no jump is present, a misinterpretation
is likely.

It might even happen that intersections are present in the original data but not
projected. Figure 5.14 (a) shows the t-SNE projection of two intersecting lines.
The projection created two sequences that turn by 90 degrees at the position
where an intersection should be. The pink highlighted samples in the center
indicate that there is an error in the projection. Since the sequences of samples
do not go in a straight direction, the local neighborhood of samples changes in
this area.

Figure 5.14 (e) shows examples of a change in speed (C1) on a logarithmic scale.
While this variance is visible for PCA and MDS by the location of samples, it
is not available for the other projection methods. Since t-SNE and UMAP do
not preserve global distances, this is also expected. However, it may lead to
misinterpretation. When exploring the temporal histograms, this behavior can
be detected.

Finally, a sample projected to the wrong location (C3) is visible in Figure 5.9 B for
t-SNE. This is a special case of a jump where only one sample is projected farther
away. The underlying data represents a spiral without jumps or outliers.

Simulation Data: Kármán Vortex Street

We analyze a simulation of the Kármán vortex street [257] created by an obstacle.
The visualization of computational fluid dynamics data is a typical use case for
visualization in computational sciences, and there is previous work that applied
multidimensional time series projection to ensemble data [230].

The data consists of 801 time steps with 121,604 dimensions. The simulation
was performed on a uniform grid with a size 301 × 101. Figure 5.16 shows
some visual representations of the data. The dimensions are built from values
for the x and y positions and a direction vector for each grid cell. We used
the projection methods PCA, MDS, t-SNE, and UMAP and the same quality
metrics as in the previous section: qs1 (local neighborhood distances) for samples
and qc2 (sliding window approach) for connections. Figure 5.17 shows some
results for the projection, Figure 5.18 for the quality metrics and distances, and
Figure 5.16 (left) an alignment between some visualizations of the data to one
of the projection results.

From the analysis of the distance changes in the histogram for the original data
(Figure 5.18 (Original Distance)), we notice three distinguishable regions: First,
there is a short interval where samples are close together (distances between
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Figure 5.16 — Left: MDS projection of the Kármán vortex street simulation
(same visualization used as in Figure 5.17). Images of the underlying data for
samples are added to show the oscillating behavior and areas with jumps and
intersections. Right: Visualization of some current states for the Kármán vortex
street simulation representing the values for grid cells. Images are shown until
sample 600. Already from sample 350 (until sample 801), no significant change
to the cyclic behavior is present.

neighboring samples are rather small), then there is a transition phase where
the differences increase. Finally, the distances are rather large in the last part
and stay about the same for the second half of the timeline. These parts are
present and distinguishable in the underlying data and represent the different
stages, also visible in Figure 5.16 (right): (1) start phase without oscillation, (2)
start of oscillation, (3) repeated pattern of regular oscillation (every 31 samples
a new cycle starts). These three parts can roughly be separated into the ranges
of the samples until 120 (first part), until 350 (second part), and until the last
sample (third part); the transition to the next phase is gradual, therefore there
is no exact moment of transition.

With MDS (Figure 5.17 A), the visualization clearly shows pink colors in the
center, blue ones in the middle, and rather gray ones on the outside of the
projection. It can be seen that distances in the center are too large, then rather
too small, and finally well preserved. This is also visible in the temporal
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Figure 5.17 — Projections for the Kármán vortex street simulation: MDS (A) on
the left, PCA (B) on the top right, and t-SNE (C) bottom right.

evolution shown in Figure 5.18 (2D Distance). Additionally, there are a few
blue samples where the distances are too small at the very beginning. There
are two jumps highlighted in purple since the distance is too large in 2D. These
jumps are also visible in Figure 5.18 (Original Distance, 2D Distance, Shepard
Diagram, and Distance Metric for Connections). For the first jump, both the
connecting line and the adjacent samples are marked, and there is also an
intersection visible. The distance at this intersection is rather large, and by
exploring the histograms, we can verify this intersection as a projection error.
In the histogram for the distance at intersections (Figure 5.18 (Original Distance
at Intersections)), we see that the distance is more than two times the maximum
distance between all subsequent samples. In Figure 5.18 (Original Distances), it
is also visible that for distances in the original space, the high distances are at
the end of the timeline, and therefore, this intersection (located at the beginning
where subsequent samples are closer together in the original space) is very large
compared to the local area. There is another jump without intersections slightly
afterward. In the center of Figure 5.16 (left), it is also visible that highlighting
these samples and connections is justified. While the samples connected by a
jump are similar, samples crossing a jump or near a jump are pretty different.
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Figure 5.18 — Different plots for the projections presented in Figure 5.17:
distances between neighboring samples in the original space and 2D, Shepard
diagram for subsequent samples, quality metrics used for the samples (qs1 – local
neighborhood distances), their connections (qc2 – sliding window approach),
and temporal overview of distances at intersections.

Except for these errors, there are other intersections on the outside (many gray
disks and a few yellow ones), but compared to the first ones rather small.
These intersections are the result of many oscillating dots on the outside with
rather small changes. In Figure 5.16 (left), the cyclic behavior of the underlying
data is visualized by showing some of the 31 visualizations that belong to one
oscillation. Additionally, at the bottom, the visualizations for a nearby position
of different cycles show very similar representations.

For PCA (Figure 5.17 B), the quality was quite good, with rather low projection
errors along the timeline. The beginning and end of the projection are well
preserved when comparing the distances, except for the very beginning; here,
the projected distances are too small. This is the case for both MDS and
PCA: a few samples are blue and well visible as outliers in the Shepard
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diagram (Figure 5.18). There are many intersections with a rather large error
in the middle of the timeline and visible in the temporal plot for intersections
(here, visible rather at the beginning since there were not many intersections
before). Additionally, there are intersections in the last part of the projection,
but they are again rather small (gray dots).

The t-SNE projection is shown in Figure 5.17 C. Here, the three parts of the
simulation are clearly visible since they are projected to separate regions. The
beginning of the simulation (the left part) gets more space. Due to the non-
linearity, the size of the part in the center is larger, but the area at the end is
comparable to the beginning. Intersections occur, especially in the middle part.
Since the behavior should be rather cyclic, there is an inflow and an outflow
to this region (resulting from the clustering behavior of t-SNE), and it was
impossible to project this part without intersections. Therefore, many jumps
are visible that intersect with the first part of the projection. In the transition to
the last part of the simulation, multiple jumps are visible until, again, a cyclic
behavior is visible.

We also created a projection with UMAP. However, the visualization was
cluttered by intersections. While the first part was well projected, there were
many intersections throughout the whole remaining timeline.

Real Footage: Hurricane Dorian Timelapse

As an example of real data, we explore satellite footage of hurricane Dorian1

from the National Oceanic and Atmospheric Administration (NOAA). We used
95 frames (see Figure 5.19 (top) for some examples) with a resized resolution
of 512 × 361, resulting in 554,496 dimensions created from each pixel’s RGB
values. Figure 5.20 shows PCA and MDS projections. For samples, metric qs2
(local neighborhood preservation) is used, and for connections qc1 (sequential
distances). The more saturated and larger pink samples are, the more their local
neighborhood differs in 2D and in the original space. Purple connections are too
large compared to all other distances and green ones are to small. To compare
to the underlying data, Figure 5.19 (bottom) shows some video frames used for
the projection. Here, the beginning and end, different day and night scenes, and
some transitions are added as annotations. In the projections, there is a flow
from bottom to top visible in all images, reflecting the hurricane’s movement.
Additionally, there are many jumps available between the left and right sides.
In contrast to some other examples we showed, most of these jumps are actually
reflecting a strong change. We can see that one side of the projection represents
daylight footage, whereas the other one night images (also, see Figure 5.19). In

1 https://www.youtube.com/watch?v=e3g7NpCkZMM

https://www.youtube.com/watch?v=e3g7NpCkZMM
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Start

End

Temporal development of a day and night sequence

Figure 5.19 — Top: temporal evolution of one day and night sequence (the
fourth one) of hurricane Dorian. Bottom: MDS projection for the hurricane
Dorian data and some images used for the respective data samples. The color
of the samples shows the temporal evolution. All images of hurricane Dorian
are extracted from the footage of hurricane Dorian from the NOAA (https:
//www.youtube.com/watch?v=e3g7NpCkZMM). One frame of the video was extracted
every second. The NOAA Satellite & Information Service owns the copyright
of the footage.

total, we counted five daylight scenes, six night scenes, and eleven transitions.
This structure is well visible in the projections and the footage. For the left
PCA representation in Figure 5.20, the distance differences are similar for the
transitions. Changing the quality metric for the connections such that it is
assumed that the mean value is the best value the result in the middle column
is created. Here, it seems that there are many jumps. However, a comparison
in the other views shows that there is simply a very large difference between
all smaller 2D distances and the larger ones. We see that it is important to
verify highlighted areas in the main visualization with the other visualizations
and that it is important that an appropriate quality metric and scaling thereof
(especially, what is assumed to be the best value) is chosen.

For MDS (Figure 5.20 bottom), the distance differences between the outer and
middle parts are better preserved (almost every distance difference is slightly

https://www.youtube.com/watch?v=e3g7NpCkZMM
https://www.youtube.com/watch?v=e3g7NpCkZMM
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Figure 5.20 — PCA (top) and MDS (bottom) projections for the hurricane
Dorian data. For samples, the quality metric reflecting the preservation of the
neighborhood is used. For connections, the distance difference metric is used.
In the middle and right column, metric values for connections are standardized
(mean metric value is assumed as the best one), and in the left one, initial metric
values are used. On the right, halo visualizations are shown.

too small in the left column). Using standardization to change the mean distance
difference to the best value (Figure 5.20 bottom middle), one purple curve is
shown. This distance is too large compared to all the other ones. Samples are
drawn according to the local neighborhood preservation, and it is apparent
that this is better preserved at the end (top) than at the beginning (bottom) (the
same was also observed for PCA).

For both projection methods, in the area with more missing neighbors (at
the bottom), there are also more intersections available. The differences at
these intersections are near the mean value of all distances. The reason for
these intersections is that more samples are projected in the bottom part of the
projection since they are more similar than the samples in the later part of the
time series. Figure 5.19 shows that the first three day and night sequences are
similar, while the last one differs quite. This is also reflected in the projection.
Since more similar samples (the first three sequences) are projected nearby,
preserving distances and the neighborhood and avoiding intersections correctly
is more challenging. Additionally, the first and third sequence are slightly
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more similar than to second one, creating additional line crossings in the
projection.

The images on the right in Figure 5.20 show the halo visualizations. The
more uncertainty there is for samples, the smaller corresponding dots are
drawn, and regions with intersections and, therefore, larger uncertainty are
faded. Comparing the different visualization approaches, we can recognize that
the first both columns are better suited to explore problematic regions of the
projections. In contrast, the halo visualization uses less additional information
(colors for lines and connections, highlighted intersections) to focus on well-
projected points.

5.2.5 Discussion

In the following, we describe some observations we made while exploring
artifacts with our approach.

Intersections and Jumps

With our interactive analysis system, we are able to successfully differentiate
and verify if intersections and jumps available in the projection exist in the
original space. In the case of an intersection or a close position, no highlight
was drawn, or it was small and gray. It was yellow if the distance was rather
large. Even then, a sample could have been in the neighborhood; this could
be evaluated by comparing the distance distribution in the histograms. We
could verify our observations with reference to the original data (e.g., 3D data
or images).

Interactive Visualization

While it is possible to use different quality metrics for samples and connections,
the visualization was best perceived if only one metric was applied. The
samples and lines are usually rather small, and many samples may be visualized
depending on the dataset. When the projection has too much overplotting,
the visual encoding for samples and lines in the projection is not very helpful.
However, the exploration of histograms is useful in this case. The temporal
evolution of metrics in histograms supports the detection of outliers, sudden
or continuous changes along the timeline. While the Shepard diagram shows
the development of the relationship between 2D and the original distances, the
linkage to the histograms shows more clearly where, for example, outliers are
temporally located.
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Depending on sample connections—straight lines or curves—slightly different
intersections and intersection positions are visible that might fit better or worse.
The use of highlights shows the distances of approximated positions in the
multidimensional space. These distances are often much larger than one would
assume from the projection. The distance differences we noticed for different
connection types also indicate that there might be an even better path for the
connections and, therefore, locations for the placement of intersections, i.e., the
position where the distance is lowest or the actual position of an intersection.
Determining this position is not trivial due to the nonlinear properties of
some projection methods and the unknown change in multidimensional space
between time steps.

Projection Method

We noticed that projection results and artifacts strongly depend on the datasets,
projection method, and parameters. For the same dataset, we obtained large
variability in results with different projection methods or parameter settings.
This includes, for example, the occurrence of jumps that artificially divide the
temporal data into multiple clusters, while the real data shows a relatively
continuous development. This could be interpreted as strong changes along the
time while it may actually be an artifact from the projection.

Additionally, we noticed random samples were occasionally projected to the
wrong locations (Figure 5.9). Such samples appear as outliers within the
temporal flow. They could also be interpreted as a sudden strong temporal
change. Also, samples were sometimes projected around a virtual line (e.g.,
MDS projection in Figure 5.14 (e)). A more accurate projection would have
placed them on the line. Such an observation could wrongly be interpreted
as oscillation. With our visualizations, we were able to detect and explore
intersections, jumps, and outliers.

Halo Visualization

The visualization of white faded lines at intersecting lines works well for data
with a rather small number of samples (see Figure 5.9 or Figure 5.12). Once
there are crowded regions with many intersections and samples close together,
as, for example, in our example for simulation data (page 187 in Section 5.2.4),
the halos may hide too much information, and the visualization might look
blurred and broken. It is possible to reduce the size of halos; however, then they
might be too small to be perceived.
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5.2.6 Conclusion and Future Work

We characterized scenarios that may lead to misinterpretation of projected time
series data. In particular, we argue that projection errors already present in
traditional dimensionality reduction can become even more problematic for
projection curves due to additional, prominent visual patterns. We address
this uncertainty from the visualization by introducing visualization techniques
that support the visual analysis of projection artifacts along the temporal path,
especially at intersections and jumps in 2D space. We consider different pairwise
and point-oriented quality metrics to identify areas in the visualization that
might lead to misinterpretation. Furthermore, we estimate distances in the
original data for intersection locations in 2D, allowing us to differentiate between
intersections present only in the visualization and those also present in the data.
Our approach can be applied to any projection method and might facilitate
revealing their drawbacks for the projection of specific temporal datasets at
hand. Especially researchers using dimensionality reduction methods on their
temporal data can use our approach to verify their findings.

In the future, we would benefit from adapted or enhanced projection methods
that would avoid temporal artifacts leading to misinterpretation by putting more
weight on the temporal component, i.e., the temporal order of samples. These
methods should generate especially low projection errors along the temporal
path in the projection. Eventually, our system could be used to explore which
dimensionality reduction method suits best for temporal data. A systematic
evaluation could be performed to discover problems of projection methods and
whether they depend on the data type.

However, our main message is: we would like to increase awareness for the
additional visual uncertainty that comes with projecting multidimensional
time series to 2D visualizations, which is an often used technique in different
domains.
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5.3 Summary and Conclusion

This chapter presented two visual analysis approaches in the context of pro-
jection methods. While the first one uses dimensionality reduction to explore
multidimensional sequential data from ML by projecting it to 2D, the second
one supports analyzing the usefulness of such a visualization method for tem-
poral data. The first approach explored internal information of a classification
model based on LSTMs for text sequence classification tasks. Different visual-
izations are provided to analyze the prediction process and better understand
wrong classifications interactively. A focus lies on the visual representation of
prediction results and hidden states during the prediction process. The second
approach presents two visualization approaches to avoid misinterpretation of
visualizations created for projections of multidimensional temporal data: The
first visualization method highlights problematic regions of the projection and
visualization; the second one fades such regions such that users can better focus
on well-projected data. Additional diagrams for distances and metrics linked to
the main visualization help better understand the visualized information in the
main view.

While all research questions are handled in this chapter, a particular focus lies on
RQ1, RQ3, and RQ4: the visual analysis of sequential data, the interpretability
of ML, and the use of dimensionality reduction for the creation of visualiza-
tions. For RQ1, both approaches showed that the interactive exploration of the
sequential data using multiple views can be helpful. Users are not restricted
to working with a static image. Instead, they can explore and compare the
results using other visualization forms, include numerical values (e.g., through
tooltips), and change the parameter settings for the visual representations. We
noticed that often, one visualization alone was not sufficient and the linkage
between the different visualizations helped in the exploration. Similar to the
approaches presented in the previous chapter (Chapter 4), the first approach of
this chapter contributed to RQ3. Our approach helped by exploring the internal
states of the ML model to better understand prediction behaviors, especially
why some predictions were wrong or uncertain during the prediction process.
The second approach was primarily designed to explore RQ4. Already in the
first approach, projection results created with dimensionality reduction were
used to interpret the data, but no direct statement about the usefulness regard-
ing reliability was made. Nevertheless, we were able to successfully explore the
temporal developments within the hidden state space. Additionally, appealing
images could be created to show the shape of the projected hidden state space.
Only the second approach explored the usefulness of such visualizations when
analyzing sequential data. Projection errors and the visualization itself can lead
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to misinterpretation of the underlying data. Therefore, interpreting such data
must be done carefully, and the visualization approaches presented here can
help avoid misinterpretations. However, the presented visualizations cannot
show every problem of the projection in a satisfactory way. The effectiveness
of the visual representations highly depends on the number of projected data
samples, their location in 2D space, the projection method, and underlying
structures.
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Conclusion

In this thesis, different approaches for the visual analysis of sequential data
were presented. The focus was on eye tracking data and analyzing internal
states of ML models. Additionally, the use of dimensionality reduction for the
generation of visualizations for sequential data played an important role.

The following presents a summary of the chapters, a discussion of the research
questions posed earlier (Section 1.1), and future research directions.

6.1 Summary of Chapters

Except for the first two chapters, containing an introduction and background
information, this thesis is structured into three main chapters introducing differ-
ent visual analysis approaches for sequential data. Chapter 3 explores temporal
data from eye tracking in two different systems. The subsequent chapter (Chap-
ter 4) introduces two approaches designed to foster the explainability of ML
models using sequences as input, in internal mechanisms, and, in the first
approach, as output. In the last chapter (Chapter 5), dimensionality reduction
techniques are applied to sequential data (in one case from ML) as preparation
for visualization.

Section 3.1 – Visual Exploration of Microsaccades The main idea behind
the first system presented in this thesis, VisME, is to provide an interactive
visualization system where users can use a filter to detect (micro)saccades with
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different filter settings to analyze the respective results in multiple views. This
allows users to try different parameter settings for eye movement detection and
explore the influence on the visualizations. Additionally, other researchers can
use the tool on some dataset to verify that respective parameter settings are
appropriate. Consequently, the tool supports reproducing results in the eye
tracking community.

Section 3.2 – Comparative Gaze Analysis ETFuse is a system to compare the
eye movements of two people playing an online game against each other or in
collaboration. The users play on two devices with possibly different hardware
properties, and the devices may be located in different places. This approach
supports a flexible setup of the experiment using available hardware while
making the data comparison simple by automatically merging the data for
comparison. Here, temporal and spatial synchronization is performed, and
different sampling frequencies of the recordings are considered. Visualizations
include gaze plots, attention maps, and a timeline visualization to compare the
distance of gaze positions of the two players.

Section 4.1 – Neural Machine Translation There are still many issues when
automatically translating a document that may result in poor translation results.
In the visual analytics system NMTVis, the capabilities of humans and ML are
combined to create high-quality translations. Users can interactively explore
documents and sentences, verify their correctness, understand the translation
process, correct the sentences, and fine-tune the translation model. The vi-
sualizations to show sequential internal information of the underlying ML
model include attention views to visualize the relationship between words of
the source sentence and the current translation. Additionally, the beam search
view visualizes different translation possibilities as a hierarchical structure and
provides insights into how the underlying translation model chooses the final
translation.

Section 4.2 – Visual Question Answering The VQA Explorer uses scene
graphs representing the content of images and questions as input to predict
answers. The scene graphs consist of nodes and edges that represent objects
in an image and their relations to each other. Each object can have attributes
such as the color or its current state. The edges have properties describing
the connections between objects. Our approach aims to identify and correct
prediction errors and provide insights into the prediction process through
visualization of internal information. The approach can be used for debugging
and data curation.
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Section 5.1 – Analysis of Hidden States In an interactive approach for ex-
ploring the internal states of a text classification model, users can explore how
hidden states store and process information while feeding an input sequence
into the ML model. The main view shows the projection generated with dimen-
sionality reduction for the hidden states in the LSTM layer. The trajectory in the
projection can show how the hidden states change when the model processes
the words in a text sequence. The sequential evolution can also be shown in
other visualizations highlighting the expected prediction result or distances
between hidden states.

Section 5.2 – Visual Quality of Time Series Projections Finally, an approach
for reducing misinterpretation of visualizations for 2D projections is presented.
The projections are generated with dimensionality reduction techniques applied
to multidimensional temporal data. When data is being projected to 2D, not all
information can be maintained. Well-known problems are false and missing
neighbors and variances in distances between neighbors. For temporal data,
additional connections between samples exist in the visualizations. They may
introduce additional artifacts and possibilities for misinterpretation. For ex-
ample, varying distances, jumps, outliers, and intersections could be present
in the projection but not in the data. Our tool has two visualization modes
with different goals for exploring such artifacts. An uncertainty highlighting
visualization highlights problematic regions of the projection and the halo
visualization directs focus to the correctly projected data.

6.2 Overarching Discussion

For all presented projects, different visual analysis systems were developed that
use sequential data as input. The approaches have the goal of allowing interac-
tive exploration of the visualizations for the input data. Most of these analysis
systems were designed for two main domains: eye tracking and explainability of
ML with sequential aspects. For eye tracking, the approaches support parameter
exploration as well as reproduction of eye movement detection. Additionally,
they facilitate comparative analysis of eye movement data. In the context of
ML, models were analyzed using interactive visualizations and, e.g., unsuper-
vised learning to explore the internal prediction mechanisms and improve the
performance for predictions (e.g., through improved models or input data).
Additionally, challenges in the visualization and analysis of time series data
were explored, namely for multidimensional time series projections generated
through dimensionality reduction. All our techniques profit in numerous ways
from interactive visualizations. Besides classical visualizations such as bar
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charts, timeline visualizations, and scatterplots, our visualization techniques
include matrix representations, heatmaps, and scanpath visualizations. We
also use tree- and graph-based visualizations and parallel coordinate plots.
All visualizations were adapted for the specific use cases and a combination
of different visualizations were incorporated into systems for visual analysis
with different interaction techniques. We made the source code and additional
material (e.g., datasets and videos) publicly available for all our approaches to
allow reproducibility of our experiments, promote trust in our techniques, and
foster open science.

In the following, we comment on the research questions posed at the beginning
of this thesis (Section 1.1). The first research questions are more general and,
thus, covered by more chapters of this thesis than the latter, more specific
research questions.

RQ1: How beneficial is interactive visual analysis in exploring sequential data?

The usefulness of visual analysis for sequential data depends on the data,
analysis goals, target groups, chosen visualizations, interaction techniques,
and other factors. If no visualizations are available, users often face a large
amount of raw data that requires analysis, which might be tedious. Even
when static visualizations are provided that show important aspects of the
data, users cannot explore the data from different perspectives. However, with
interactive visual analysis approaches in general, data can be explored and
adapted, allowing for better interpretation and conclusions to be drawn from
the data. Techniques such as brushing and linking [332] combined with multiple
coordinated views [273] can help to improve understanding visual elements
when exploring them in a different context or from various perspectives with
additional information. It is, for example, possible to provide more context
in some visualizations. Additionally, parameters can be changed (see RQ2)
for preprocessing and to obtain adapted visualizations (e.g., to modify the
appearance of visual elements or show subsets of the data).

This research question concerns almost all presented methods of this thesis; in
these approaches, sequential data plays an important role during the visual anal-
ysis. The usefulness of individual visual analysis approaches can be assessed
through evaluations. Evaluation methods (see Section 2.7 for an overview)
can include the demonstration of use cases, computer-based evaluations to
determine the relevance of visualized information, and user studies (e.g., with
experts) to obtain feedback on the actual use of an approach.
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For each approach introduced in this thesis, we provided use cases to show
the capabilities of our approaches and how our systems can be used. Here,
the visual analysis was always helpful in exploring the data or improving the
presented information. We noticed that the combination of different visual-
izations, interaction techniques, and tooltips helped us better understand the
main visualization. They provided additional information (e.g., additional
numerical data) and showed the data in different contexts (e.g., filtered data,
with temporal or spatial focus). In some approaches, it was possible to even
improve the quality of the provided data.

Additionally, computer-based evaluations revealed the usefulness of the pre-
sented information and mechanisms of the two approaches presented in Chap-
ter 4. For example, we could show that iteratively improving translations and
fine-tuning the ML model could create better predictions. This way, we could
confirm that our proposed workflow succeeds in correcting sentences and gen-
erating a better translation result after improving the model with corrected
sentences.

In user studies, usually performed with experts of related domains, a user-
oriented analysis can be performed to see if the visual analysis is helpful in
practical use. The experts provide feedback on how useful a visual analysis
system is in exploring (sequential) data. We performed user studies for the
approaches presented in Chapter 3 and Chapter 4. Each user study confirmed
the usefulness of our approaches. However, creating a visual analysis system
that supports all user needs is challenging. Experts and beginners alike require
tailored tools to effectively interpret and interact with the data. Domain ex-
perts often need extended features such as advanced filtering and interaction
techniques to adapt the visualizations or the presented data to align with their
specific needs. Such tools help experts to focus on complex behaviors while
beginners profit from a simpler and more intuitive system design. In the user
studies performed during this thesis, we always received positive feedback for
our prototypes, but there were also always recommendations for improvement.
For example, VisME (Section 3.1) was evaluated with a think-aloud protocol,
and overall, all participants liked our approach and highlighted some of our
interaction techniques. However, they also mentioned that additional features
would be nice for the analysis (e.g., manual modification of samples belonging
to microsaccades). While our approach is a good starting point for the analysis,
some of the users would prefer to use scripts or other tools for a deeper analysis.
This highlights that additional features would be required for the whole visual
analysis process. In ETFuse (Section 3.2), an expert analyzed the collected data.
He noted that not all visualizations were immediately helpful but could provide
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additional information. For NMTVis (Section 4.1), participants mentioned that
more automatic help finding incorrect translations would be useful.

Overall, the visual analysis of sequential data can be helpful, but the specific
needs and requirements of users might require individual features for a success-
ful visual analysis of their data. Depending on the experience levels of users
and analysis goals, every user might have individual needs for the analysis.
This was visible in the user feedback we collected in our experiments.

RQ2: How does the choice of (hyper)parameter values (in preprocessing and the
analysis) affect the visual analysis of sequential data?

In the approaches presented in this thesis, parameter settings can be modified
for data preprocessing, analysis, and visualization. Well-chosen values can help
users better understand the data, but poor values can lead to misinterpretation
and wrong conclusions. It is often difficult to recognize and verify that values
are well chosen; especially when there is no comparison possible, when chosen
values are not provided in published work, or when others cannot reproduce
the experiments. The parameter settings can influence the data used for visual-
ization and how it is presented to users and afterward interpreted. Therefore,
this research question has a direct connection to the previous one. Most datasets
have to be preprocessed before visualization. This can be achieved in multiple
ways and with different options. Additionally, for the visualizations, various
decisions have to be made. Sometimes, these options are passed on to users
who can adapt different parameters. This includes, for example, the size and
amount of visualized data elements or other thresholds.

This research question concerns all presented methods. For some, it plays a ma-
jor role (e.g., Section 3.1), and for others just a minor one. For example, VisME
(Section 3.1) has a special focus on the preprocessing step before visualization.
Users can interactively set the parameters for the (micro)saccade filter. We no-
ticed that different settings influence both the amount and length of the detected
eye movements and, subsequently, the visualizations and conclusions that can
be drawn from them. Therefore, it is important that the parameters are selected
with care and that the visualized results are verified such that the detected eye
movements are labeled correctly. Additionally, for the visualizations, e.g., the
binning size for the rose plots plays an important role during interpretation.
This affects how much data is averaged and whether, for example, outliers can
be detected.

For ETFuse (Section 3.2), in the first step, the data from the different sources
has to be merged. The user has to select a method and additional parameters
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(e.g., the stone used for synchronization). This selection sometimes results in
a wrong synchronization (e.g., when using poor-quality recordings or when
visual elements on the screen prevent a successful synchronization). If the user
does not notice this, wrong conclusions will be drawn from the information
presented. Additionally, interval sizes must be chosen for the distance plots and
attention maps to aggregate eye movement data. The smaller these intervals,
the more information is revealed, but there is not much averaging, which could
increase interpretability. If the intervals are larger, some important information
may be missed.

In NMTVis (Section 4.1), the user has to first select the translation model. Of
these, the Transformer creates better translations, and it is therefore more chal-
lenging to find mistranslations. Additionally, using this model, the connections
between the underlying model and the prediction in the attention view are less
visible. Our LSTM architecture usually creates more mistranslations, which
makes it easier to find wrong translations and improve the model. The align-
ment in the attention view also makes more sense for the translations generated
with the LSTM model compared to the ones created with the Transformer.
Besides the translation model, visual parameters influence the presented data.
For example, the beam size provides the capability to show more alterna-
tive translations, possibly including better ones. However, the screen size to
show more translations may be limited, and users would have to process more
information.

Similar to NMTVis, in the VQA Explorer (Section 4.2), different DL models
can be selected. Additional visual parameters, such as size or color of visual
elements, can be adapted to influence how the visual information is perceived
and interpreted.

While for NMTVis and the VQA Explorer users have to select a DL model,
the system to explore hidden states of classification results for text sequences
(Section 5.1) requires selecting a projection method (along with its hyperparam-
eters) during preprocessing. The projection method influences how the hidden
state space is presented. In our examples, t-SNE showed the most suitable
and best-looking results. Using, for instance, PCA would have projected all
information into a narrower space, which would have made it impossible to
follow the path of individual sequences. Additionally, this approach offers users
different options for using the color of dots (e.g., actual vs. predicted classes)
and lines (color vs. grayscale for better visibility), or the type of presented
words on top of the projection.

In the system to explore the visual quality of projections of temporal multidi-
mensional data (Section 5.2), the first choice is also the projection method that
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influences the visualized elements. This choice affects how useful the presented
visualizations are and how many projection errors, artifacts, or other compo-
nents for misinterpretation are shown. Next, different metrics can be chosen for
the visualizations to find problematic regions in the projection. Depending on
the use case, one metric might work better than another to detect areas likely
affected by misinterpretation in the projection. Additionally, there are settings
for the size of visual elements that influence how the presented information is
perceived.

Overall, well-chosen parameter settings are crucial for creating meaningful
visualizations from input data and avoid misinterpretation. The visual repre-
sentations can support users in interpreting the underlying data and in making
decisions based on the provided information if the data is well presented.

RQ3: How can visual analysis of internal (sequential) components of ML methods
improve their interpretability?

ML is currently becoming more relevant in our lives. Its methods can be very
powerful but difficult to understand. There are already many approaches that
help better understand ML models (see Section 2.5.3). However, there are still
many challenges in interpreting the underlying prediction mechanisms and
generating better predictions. The approaches presented in this work can help
achieve goals such as generating a better understanding of how a prediction
was made, debugging prediction results or mechanisms, data curation, and
improving the predictions.

This research question concerns three methods presented in this thesis using
ML as a subject for the exploration. NMTVis (Section 4.1) provides two types
of visualizations for sequential internal information of the underlying models:
In the form of attention-based visualizations, it is possible to see an alignment
between two sentences in different languages. With the beam search view, it is
possible to see how the prediction was performed by visualizing different alter-
native translations in a hierarchical structure. Additionally, parallel coordinate
plots provide information about the prediction quality and can be used to find
mistranslations.

The VQA Explorer (Section 4.2) does not provide internal information for
sequences but for the scene graphs during prediction. Here, attention values
for nodes and edges are presented. The attention values are reflected in the size
of nodes and can show if the correct object has the highest attention. This helps
in debugging or data curation by detecting missing or wrong objects, attributes,
or connections in the scene graphs.
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In the system to explore hidden states of classification results for text sequences
(Section 5.1), information about hidden states and expected predictions can be
shown to the user. This approach can be used to see how these values change
while performing the prediction. Different visualizations are provided during
the analysis. Additional information, such as words connected to large changes,
can also be highlighted. The visualizations help to explore and understand
wrong, but also correct or uncertain prediction results.

Overall, internal ML components can provide a better understanding of both
correct and incorrect predictions. This can be achieved by providing user access
to internal mechanisms and states of the ML models through interactive visu-
alizations. The approaches can also help improve the data quality, prediction
results, and prediction models. We noticed that when predictions were incorrect,
it was not always the problem of a poorly trained model; often, it was the fault
of poorly or faulty labeled data.

RQ4: How appropriate are dimensionality reduction techniques for visually
exploring sequential data?

Various dimensionality reduction methods are used to project data to 2D for
visualization. Many previous research projects also do this for sequential data to
find typical sequential patterns, trends, and behaviors (see Table 5.1 on page 171).
There is even research that describes how such properties can be identified in the
visualizations of the projections [45, 318]. If a projection method is well chosen
for some data to extract important information, the visualizations can provide
meaningful insights into the structure of the data. However, in one of the
projects presented in this thesis (Section 5.2), we observed that there are many
issues with using such a visualization that could lead to wrong interpretations.
In general, problems caused by dimensionality reduction are projection errors,
including missing and wrong neighbors and varying distances. Additionally,
lines connecting subsequent samples that might intersect are present in the
visualizations for sequential data. At first sight, such visualizations seem to be
intuitive. However, our investigation showed that they should be used with
care. The apparent patterns mentioned in other research papers are not always
existing in the data and can be misinterpreted.

This research question concerns only the approaches using dimensionality
reduction methods on sequential data for the visual analysis; this includes the
two techniques presented in Chapter 5. In the system to explore hidden states of
classification results for text sequences (Section 5.1), we use the dimensionality
reduction method to project the hidden state space to 2D. The visualizations
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can then help explore how the prediction process was performed within this
space. Here, it is crucial which projection method is chosen to create the
visualizations. For us, it was important to provide a visualization that allowed
us to follow the path of intermediate prediction steps. Our analysis did not
explore whether the actual visualizations are reliable. Nevertheless, we noticed
that the visualizations can help better understand how the hidden states change
in the context of the hidden state space. The usefulness of such visualizations
can be explored with our approach to explore the visual quality of projections
of temporal multidimensional data (Section 5.2). We noticed that outliers,
jumps, oscillating data samples, and otherwise varying distances visible in the
2D projection are not always existing in the data. Such artifacts often occur,
especially for nonlinear projections. We also had cases with intersecting lines
that did not represent temporal recurrences for linear projection methods (e.g.,
PCA). With our interactive visual analysis approach, misinterpretation can
be circumvented by considering and examining problematic regions. Here,
different distance and metric plots can be used in addition to a visualization
that highlights or fades such artifacts. While through these visualizations
misinterpretations can be avoided, the interpretation is still not easily done, and
not all problems can always be detected. A better solution would be to use a
specifically designed projection method for temporal data. Even then, due to the
curse of dimensionality, there might be similar problems in the interpretation
of the data.

6.3 Future Research Directions

In this thesis, different approaches related to sequential data analysis were
presented. The main focus was on temporal data from eye tracking, the ex-
plainability of internal states of ML models based on sequences, and the use
of dimensionality reduction to create visualizations for sequential data. There
is still a lot of research left in each of these areas. Besides the future research
directions mentioned for each approach, the following describes some broader
research areas.

In the area of eye tracking, continuously, newer and better hardware is being
produced. Newer technology might be able to record eye movements with
higher frequency and accuracy, allowing the exploration of even smaller details.
These explorations might require new analysis techniques compared to the
methods used before. In our presented approaches, we already allow a flexible
selection of parameter settings for the analysis (Section 3.1). Here, it would also
be possible to evaluate if parameter settings for different recording frequencies
need to be changed to correctly detect eye movements or if new methods are
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required. Additionally, it is worth exploring whether the parameter settings de-
pend on specific properties of the recorded data. Furthermore, ML approaches
could be used to automatically determine the most suitable parameter values
for specific datasets to ensure accurate eye movement detection. Finally, in
our analysis approaches, we could integrate additionally recorded data (e.g.,
neurophysiological data) to investigate potential connections with specific eye
movement behaviors, such as the occurrence of microsaccades.

For ML, the development of many new and powerful ML models could be
observed during this research. Since ML is becoming increasingly popular,
there is a large interest in integrating it into our lives. However, such a broad
use requires trust, the reliability for creating correct prediction results, and
to overcome the difficulties in understanding the prediction models. The
interpretability of ML models is often still not well addressed, but it is highly
needed to understand prediction mechanisms and build trust. The ML-based
approaches presented in this thesis (Chapter 4 and Section 5.1) serve as small
building blocks to achieve a better understanding of ML techniques. However,
only some specific approaches are covered. Each approach also presents just a
small portion of the internal mechanisms to users to draw conclusions. There
are still many unexploited opportunities in this area. These could include
the connection of the training data, data from the training process, internal
mechanisms during prediction, and the final prediction. It is both important
to understand why predictions are not correct and why some specific wrong
prediction was generated. Here, a more detailed explanation of the decisions
and results of the model is required, including data from various sources to
support the reasoning. More research is required to solve the problems of XAI
for general approaches and specific applications, especially for newer, larger,
and more complex models. Individual ideas of existing approaches, also the
ones presented in this thesis, can be extended or combined with new analysis
approaches to understand these models and build trust. Such trustworthiness
is particularly essential in fields like medicine, where it is crucial for physicians
to understand why a specific diagnosis was predicted by a DL model for a
patient.

Next, the visual analysis processes could be improved by integrating more
automatic processing or even ML. For example, for NMTVis (Section 4.1), the
search for mistranslations or the detection of poor scenes in the VQA Explorer
(Section 4.2) could be performed automatically. Similarly, the parameter set-
tings for microsaccades filtering or the detection of microsaccades themselves
(Section 3.1) could be based on ML. Interesting eye movement patterns (such
as described in the use case of our visual analysis system ETFuse (Section 3.2)
could be detected automatically with ML. As introduced in Section 2.5.3 as
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ML4Vis4ML, we already apply unsupervised ML on hidden states to generate
visualizations for a supervised ML approach. The next step would be to extend
this approach by applying some supervised ML approach on data generated
with supervised ML. This idea might bring new and unexpected insights into
different ML models. Since ML approaches can create astonishing results, new
insights could be obtained. However, the disadvantage of such a method is
that the trustworthiness of the results may again be unclear, as they would be
generated by a new black box model.

When using dimensionality reduction methods, it is often unclear which method
and which parameter choice are best suited to create the most appropriate
visualizations required in the analysis. In the case of Section 5.1, t-SNE with
some fixed parameter settings was chosen as preparation for the creation of
the visualizations. Another method or parameter values might have generated
better visualizations to analyze the prediction results of the ML models. A
systematic evaluation could reveal which method and parameter settings is
most suitable. Moreover, for the use of dimensionality reduction in the analysis
of sequential data (see Section 5.2), an approach is needed that automatically
generates a better projection for time series, considering temporal aspects. The
visualization itself of projected data could then lead to less misinterpretation.
Such an improved projection method for sequential data could be used to
gain more reasonable insights into the properties of sequences. An extension
thereof would be an adaptive method that automatically chooses the best-
suitable dimensionality reduction method and sets parameter values based on
the properties of the data to create visualizations with a minimum of distortions.
The generated results could still be explored with the visualization approaches
proposed here to evaluate if users can trust the presented information.
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